Διαφορά μεταξύ των αναθεωρήσεων του «Βοήθεια:Επεξεργασία»
Γραμμή 1: | Γραμμή 1: | ||
Ακολουθεί μια σύντομη περιγραφη για την χρήση των βασικών tags του wiki. Αν βρείτε κάτι χρήσιμο μην το κρατάτε για τον εαυτό σας, απλά προσθέστε το! | Ακολουθεί μια σύντομη περιγραφη για την χρήση των βασικών tags του wiki. Αν βρείτε κάτι χρήσιμο μην το κρατάτε για τον εαυτό σας, απλά προσθέστε το! | ||
+ | |||
+ | ==Γενικά== | ||
{| style="background-color:white; font-size:small; float: left; margin:3px 3px 3px 10px" | {| style="background-color:white; font-size:small; float: left; margin:3px 3px 3px 10px" |
Αναθεώρηση της 03:59, 10 Νοεμβρίου 2007
Ακολουθεί μια σύντομη περιγραφη για την χρήση των βασικών tags του wiki. Αν βρείτε κάτι χρήσιμο μην το κρατάτε για τον εαυτό σας, απλά προσθέστε το!
Γενικά
Wiki text | Result |
''italic'' | italic |
'''bold''' | bold |
'''''bold and italic''''' | bold and italic |
==heading== |
Headings in different sizes |
[[Link to another page]] [[Link|different title]] |
Internal Link to another page
on the wiki |
http://www.example.org |
External link Link with description |
[[fr:Page en français]] | Interwiki link to french Wikipedia (appears under “languages“) |
[[Category:Example]] | Add article to category “example“ |
---- |
horizontal line |
* one |
Bullet list |
# one |
Numbered list |
[[Image:File.jpg|Text]] [[Image:File.jpg|frame|Text]] |
Image with alternative text Image aligned right with caption |
[[Media:File.ogg]] | Download link |
{{Name}} | Include template “Name“ |
--~~~ | Signature (Link to userpage) |
--~~~~ |
Signature with timestamp (date & time) |
#REDIRECT [[Other article]] | Redirect to another article |
Μαθηματική Γραφή
Accents/Diacritics | |
---|---|
\acute{a} \grave{a} \hat{a} \tilde{a} \breve{a}
|
<math>\acute{a} \grave{a} \hat{a} \tilde{a} \breve{a}\,\!</math> |
\check{a} \bar{a} \ddot{a} \dot{a}
|
<math>\check{a} \bar{a} \ddot{a} \dot{a}\,\!</math> |
Standard functions | |
\sin a \cos b \tan c
|
<math>\sin a \cos b \tan c\,\!</math> |
\sec d \csc e \cot f
|
<math>\sec d \csc e \cot f\,\!</math> |
\arcsin h \arccos i \arctan j
|
<math>\arcsin h \arccos i \arctan j\,\!</math> |
\sinh k \cosh l \tanh m \coth n
|
<math>\sinh k \cosh l \tanh m \coth n\,\!</math> |
\operatorname{sh}o \operatorname{ch}p \operatorname{th}q
|
<math>\operatorname{sh}o \operatorname{ch}p \operatorname{th}q\,\!</math> |
\operatorname{argsh}r \operatorname{argch}s \operatorname{argth}t
|
<math>\operatorname{argsh}r \operatorname{argch}s \operatorname{argth}t\,\!</math> |
\lim u \limsup v \liminf w \min x \max y
|
<math>\lim u \limsup v \liminf w \min x \max y\,\!</math> |
\inf z \sup a \exp b \ln c \lg d \log e \log_{10} f \ker g
|
<math>\inf z \sup a \exp b \ln c \lg d \log e \log_{10} f \ker g\,\!</math> |
\deg h \gcd i \Pr j \det k \hom l \arg m \dim n
|
<math>\deg h \gcd i \Pr j \det k \hom l \arg m \dim n\,\!</math> |
Modular arithmetic | |
s_k \equiv 0 \pmod{m} a \bmod b
|
<math>s_k \equiv 0 \pmod{m} a \bmod b\,\!</math> |
Derivatives | |
\nabla \partial x dx \dot x \ddot y
|
<math>\nabla \partial x dx \dot x \ddot y\,\!</math> |
Sets | |
\forall \exists \empty \emptyset \varnothing
|
<math>\forall \exists \empty \emptyset \varnothing\,\!</math> |
\in \ni \not \in \notin \subset \subseteq \subsetneq \supset \supseteq \supsetneq
|
<math>\in \ni \not \in \notin \subset \subseteq \subsetneq \supset \supseteq \supsetneq\,\!</math> |
\cap \bigcap \cup \bigcup \biguplus \setminus \smallsetminus
|
<math>\cap \bigcap \cup \bigcup \biguplus \setminus \smallsetminus\,\!</math> |
\sqsubset \sqsubseteq \sqsupset \sqsupseteq \sqcap \sqcup \bigsqcup
|
<math>\sqsubset \sqsubseteq \sqsupset \sqsupseteq \sqcap \sqcup \bigsqcup\,\!</math> |
Operators | |
+ \oplus \bigoplus \pm \mp -
|
<math>+ \oplus \bigoplus \pm \mp - \,\!</math> |
\times \otimes \bigotimes \cdot \circ \bullet \bigodot
|
<math>\times \otimes \bigotimes \cdot \circ \bullet \bigodot\,\!</math> |
\star * / \div \frac{1}{2}
|
<math>\star * / \div \frac{1}{2}\,\!</math> |
Logic | |
\land \wedge \bigwedge \bar{q} \to p
|
<math>\land \wedge \bigwedge \bar{q} \to p\,\!</math> |
\lor \vee \bigvee \lnot \neg q \And
|
<math>\lor \vee \bigvee \lnot \neg q \And\,\!</math> |
Root | |
\sqrt{2} \sqrt[n]{x}
|
<math>\sqrt{2} \sqrt[n]{x}\,\!</math> |
Relations | |
\sim \approx \simeq \cong \dot= \overset{\underset{\mathrm{def}}{}}{=}
|
<math>\sim \approx \simeq \cong \dot= \overset{\underset{\mathrm{def}}{}}{=}\,\!</math> |
\le < \ll \gg \ge > \equiv \not\equiv \ne \mbox{or} \neq \propto
|
<math>\le < \ll \gg \ge > \equiv \not\equiv \ne \mbox{or} \neq \propto\,\!</math> |
Geometric | |
\Diamond \Box \triangle \angle \perp \mid \nmid \| 45^\circ
|
45^\circ\,\!</math> |
Arrows | |
\leftarrow \gets \rightarrow \to \not\to \leftrightarrow \longleftarrow \longrightarrow
|
<math>\leftarrow \gets \rightarrow \to \not\to \leftrightarrow \longleftarrow \longrightarrow\,\!</math> |
\mapsto \longmapsto \hookrightarrow \hookleftarrow \nearrow \searrow \swarrow \nwarrow
|
<math>\mapsto \longmapsto \hookrightarrow \hookleftarrow \nearrow \searrow \swarrow \nwarrow\,\!</math> |
\uparrow \downarrow \updownarrow \rightharpoonup \rightharpoondown \leftharpoonup \leftharpoondown \upharpoonleft
|
<math>\uparrow \downarrow \updownarrow \rightharpoonup \rightharpoondown \leftharpoonup \leftharpoondown \upharpoonleft\,\!</math> |
\upharpoonright \downharpoonleft \downharpoonright \rightleftharpoons \Leftarrow \Rightarrow \Leftrightarrow \Longleftarrow
|
<math>\upharpoonright \downharpoonleft \downharpoonright \rightleftharpoons \Leftarrow \Rightarrow \Leftrightarrow \Longleftarrow\,\!</math> |
\Longrightarrow \Longleftrightarrow (or \iff) \Uparrow \Downarrow \Updownarrow \leftleftarrows \leftrightarrows \Lleftarrow \leftarrowtail \looparrowleft
|
<math>\Longrightarrow \Longleftrightarrow \Uparrow \Downarrow \Updownarrow \leftleftarrows \leftrightarrows \Lleftarrow \leftarrowtail \looparrowleft \,\!</math> |
\leftrightharpoons \curvearrowleft \circlearrowleft \Lsh \upuparrows \rightrightarrows \rightleftarrows \Rrightarrow \rightarrowtail \looparrowright
|
<math>\leftrightharpoons \curvearrowleft \circlearrowleft \Lsh \upuparrows \rightrightarrows \rightleftarrows \Rrightarrow \rightarrowtail \looparrowright\,\!</math> |
\curvearrowright \circlearrowright \Rsh \downdownarrows \multimap \leftrightsquigarrow \rightsquigarrow \nLeftarrow \nleftrightarrow \nRightarrow
|
<math>\curvearrowright \circlearrowright \Rsh \downdownarrows \multimap \leftrightsquigarrow \rightsquigarrow \nLeftarrow \nleftrightarrow \nRightarrow\,\!</math> |
\nLeftrightarrow \longleftrightarrow
|
<math>\nLeftrightarrow \longleftrightarrow\,\!</math> |
Special | |
\eth \S \P \% \dagger \ddagger \ldots \cdots
|
<math>\eth \S \P \% \dagger \ddagger \ldots \cdots\,\!</math> |
\smile \frown \wr \triangleleft \triangleright \infty \bot \top
|
<math>\smile \frown \wr \triangleleft \triangleright \infty \bot \top\,\!</math> |
\vdash \vDash \Vdash \models \lVert \rVert \imath \hbar
|
<math>\vdash \vDash \Vdash \models \lVert \rVert \imath \hbar\,\!</math> |
\ell \mho \Finv \Re \Im \wp \complement \diamondsuit
|
<math>\ell \mho \Finv \Re \Im \wp \complement \diamondsuit\,\!</math> |
\heartsuit \clubsuit \spadesuit \Game \flat \natural \sharp
|
<math>\heartsuit \clubsuit \spadesuit \Game \flat \natural \sharp\,\!</math> |
Unsorted (new stuff) | |
\vartriangle \triangledown \lozenge \circledS \measuredangle \nexists \Bbbk \backprime \blacktriangle \blacktriangledown
|
<math> \vartriangle \triangledown \lozenge \circledS \measuredangle \nexists \Bbbk \backprime \blacktriangle \blacktriangledown</math> |
\blacksquare \blacklozenge \bigstar \sphericalangle \diagup \diagdown \dotplus \Cap \Cup \barwedge
|
<math> \blacksquare \blacklozenge \bigstar \sphericalangle \diagup \diagdown \dotplus \Cap \Cup \barwedge</math> |
\veebar \doublebarwedge \boxminus \boxtimes \boxdot \boxplus \divideontimes \ltimes \rtimes \leftthreetimes
|
<math> \veebar \doublebarwedge \boxminus \boxtimes \boxdot \boxplus \divideontimes \ltimes \rtimes \leftthreetimes</math> |
\rightthreetimes \curlywedge \curlyvee \circleddash \circledast \circledcirc \centerdot \intercal \leqq \leqslant
|
<math> \rightthreetimes \curlywedge \curlyvee \circleddash \circledast \circledcirc \centerdot \intercal \leqq \leqslant</math> |
\eqslantless \lessapprox \approxeq \lessdot \lll \lessgtr \lesseqgtr \lesseqqgtr \doteqdot \risingdotseq
|
<math> \eqslantless \lessapprox \approxeq \lessdot \lll \lessgtr \lesseqgtr \lesseqqgtr \doteqdot \risingdotseq</math> |
\fallingdotseq \backsim \backsimeq \subseteqq \Subset \preccurlyeq \curlyeqprec \precsim \precapprox \vartriangleleft
|
<math> \fallingdotseq \backsim \backsimeq \subseteqq \Subset \preccurlyeq \curlyeqprec \precsim \precapprox \vartriangleleft</math> |
\Vvdash \bumpeq \Bumpeq \geqq \geqslant \eqslantgtr \gtrsim \gtrapprox \eqsim \gtrdot
|
<math> \Vvdash \bumpeq \Bumpeq \geqq \geqslant \eqslantgtr \gtrsim \gtrapprox \eqsim \gtrdot</math> |
\ggg \gtrless \gtreqless \gtreqqless \eqcirc \circeq \triangleq \thicksim \thickapprox \supseteqq
|
<math> \ggg \gtrless \gtreqless \gtreqqless \eqcirc \circeq \triangleq \thicksim \thickapprox \supseteqq</math> |
\Supset \succcurlyeq \curlyeqsucc \succsim \succapprox \vartriangleright \shortmid \shortparallel \between \pitchfork
|
<math> \Supset \succcurlyeq \curlyeqsucc \succsim \succapprox \vartriangleright \shortmid \shortparallel \between \pitchfork</math> |
\varpropto \blacktriangleleft \therefore \backepsilon \blacktriangleright \because \nleqslant \nleqq \lneq \lneqq
|
<math> \varpropto \blacktriangleleft \therefore \backepsilon \blacktriangleright \because \nleqslant \nleqq \lneq \lneqq</math> |
\lvertneqq \lnsim \lnapprox \nprec \npreceq \precneqq \precnsim \precnapprox \nsim \nshortmid
|
<math> \lvertneqq \lnsim \lnapprox \nprec \npreceq \precneqq \precnsim \precnapprox \nsim \nshortmid</math> |
\nvdash \nVdash \ntriangleleft \ntrianglelefteq \nsubseteq \nsubseteqq \varsubsetneq \subsetneqq \varsubsetneqq \ngtr
|
<math> \nvdash \nVdash \ntriangleleft \ntrianglelefteq \nsubseteq \nsubseteqq \varsubsetneq \subsetneqq \varsubsetneqq \ngtr</math> |
\ngeqslant \ngeqq \gneq \gneqq \gvertneqq \gnsim \gnapprox \nsucc \nsucceq \succneqq
|
<math> \ngeqslant \ngeqq \gneq \gneqq \gvertneqq \gnsim \gnapprox \nsucc \nsucceq \succneqq</math> |
\succnsim \succnapprox \ncong \nshortparallel \nparallel \nvDash \nVDash \ntriangleright \ntrianglerighteq \nsupseteq
|
<math> \succnsim \succnapprox \ncong \nshortparallel \nparallel \nvDash \nVDash \ntriangleright \ntrianglerighteq \nsupseteq</math> |
\nsupseteqq \varsupsetneq \supsetneqq \varsupsetneqq
|
<math> \nsupseteqq \varsupsetneq \supsetneqq \varsupsetneqq</math> |
\jmath \surd \ast \uplus \diamond \bigtriangleup \bigtriangledown \ominus
|
<math>\jmath \surd \ast \uplus \diamond \bigtriangleup \bigtriangledown \ominus\,\!</math> |
\oslash \odot \bigcirc \amalg \prec \succ \preceq \succeq
|
<math>\oslash \odot \bigcirc \amalg \prec \succ \preceq \succeq\,\!</math> |
\dashv \asymp \doteq \parallel
|
<math>\dashv \asymp \doteq \parallel\,\!</math> |
Subscripts, superscripts, integrals
Feature | Syntax | How it looks rendered | |
---|---|---|---|
HTML | PNG | ||
Superscript | a^2 |
<math>a^2</math> | <math>a^2 \,\!</math> |
Subscript | a_2 |
<math>a_2</math> | <math>a_2 \,\!</math> |
Grouping | a^{2+2} |
<math>a^{2+2}</math> | <math>a^{2+2}\,\!</math> |
a_{i,j} |
<math>a_{i,j}</math> | <math>a_{i,j}\,\!</math> | |
Combining sub & super | x_2^3 |
<math>x_2^3</math> | |
Preceding and/or Additional sub & super | \sideset{_1^2}{_3^4}\prod_a^b |
<math>\sideset{_1^2}{_3^4}\prod_a^b</math> | |
{}_1^2\!\Omega_3^4 |
<math>{}_1^2\!\Omega_3^4</math> | ||
Stacking | \overset{\alpha}{\omega} |
<math>\overset{\alpha}{\omega}</math> | |
\underset{\alpha}{\omega} |
<math>\underset{\alpha}{\omega}</math> | ||
\overset{\alpha}{\underset{\gamma}{\omega}} |
<math>\overset{\alpha}{\underset{\gamma}{\omega}}</math> | ||
\stackrel{\alpha}{\omega} |
<math>\stackrel{\alpha}{\omega}</math> | ||
Derivative (forced PNG) | x', y'', f', f''\! |
<math>x', y, f', f\!</math> | |
Derivative (f in italics may overlap primes in HTML) | x', y'', f', f'' |
<math>x', y, f', f</math> | <math>x', y, f', f\!</math> |
Derivative (wrong in HTML) | x^\prime, y^{\prime\prime} |
<math>x^\prime, y^{\prime\prime}</math> | <math>x^\prime, y^{\prime\prime}\,\!</math> |
Derivative (wrong in PNG) | x\prime, y\prime\prime |
<math>x\prime, y\prime\prime</math> | <math>x\prime, y\prime\prime\,\!</math> |
Derivative dots | \dot{x}, \ddot{x} |
<math>\dot{x}, \ddot{x}</math> | |
Underlines, overlines, vectors | \hat a \ \bar b \ \vec c |
<math>\hat a \ \bar b \ \vec c</math> | |
\overrightarrow{a b} \ \overleftarrow{c d} \ \widehat{d e f} |
<math>\overrightarrow{a b} \ \overleftarrow{c d} \ \widehat{d e f}</math> | ||
\overline{g h i} \ \underline{j k l} |
<math>\overline{g h i} \ \underline{j k l}</math> | ||
Arrows | A \xleftarrow{n+\mu-1} B \xrightarrow[T]{n\pm i-1} C |
<math> A \xleftarrow{n+\mu-1} B \xrightarrow[T]{n\pm i-1} C</math> | |
Overbraces | \overbrace{ 1+2+\cdots+100 }^{5050} |
<math>\overbrace{ 1+2+\cdots+100 }^{5050}</math> | |
Underbraces | \underbrace{ a+b+\cdots+z }_{26} |
<math>\underbrace{ a+b+\cdots+z }_{26}</math> | |
Sum | \sum_{k=1}^N k^2 |
<math>\sum_{k=1}^N k^2</math> | |
Sum (force \textstyle ) |
\textstyle \sum_{k=1}^N k^2 |
<math>\textstyle \sum_{k=1}^N k^2</math> | |
Product | \prod_{i=1}^N x_i |
<math>\prod_{i=1}^N x_i</math> | |
Product (force \textstyle ) |
\textstyle \prod_{i=1}^N x_i |
<math>\textstyle \prod_{i=1}^N x_i</math> | |
Coproduct | \coprod_{i=1}^N x_i |
<math>\coprod_{i=1}^N x_i</math> | |
Coproduct (force \textstyle ) |
\textstyle \coprod_{i=1}^N x_i |
<math>\textstyle \coprod_{i=1}^N x_i</math> | |
Limit | \lim_{n \to \infty}x_n |
<math>\lim_{n \to \infty}x_n</math> | |
Limit (force \textstyle ) |
\textstyle \lim_{n \to \infty}x_n |
<math>\textstyle \lim_{n \to \infty}x_n</math> | |
Integral | \int_{-N}^{N} e^x\, dx |
<math>\int_{-N}^{N} e^x\, dx</math> | |
Integral (force \textstyle ) |
\textstyle \int_{-N}^{N} e^x\, dx |
<math>\textstyle \int_{-N}^{N} e^x\, dx</math> | |
Double integral | \iint_{D}^{W} \, dx\,dy |
<math>\iint_{D}^{W} \, dx\,dy</math> | |
Triple integral | \iiint_{E}^{V} \, dx\,dy\,dz |
<math>\iiint_{E}^{V} \, dx\,dy\,dz</math> | |
Quadruple integral | \iiiint_{F}^{U} \, dx\,dy\,dz\,dt |
<math>\iiiint_{F}^{U} \, dx\,dy\,dz\,dt</math> | |
Path integral | \oint_{C} x^3\, dx + 4y^2\, dy |
<math>\oint_{C} x^3\, dx + 4y^2\, dy</math> | |
Intersections | \bigcap_1^{n} p |
<math>\bigcap_1^{n} p</math> | |
Unions | \bigcup_1^{k} p |
<math>\bigcup_1^{k} p</math> |
Fractions, matrices, multilines
Feature | Syntax | How it looks rendered |
---|---|---|
Fractions | \frac{2}{4}=0.5 |
<math>\frac{2}{4}=0.5</math> |
Small Fractions | \tfrac{2}{4} = 0.5 |
<math>\tfrac{2}{4} = 0.5</math> |
Large (normal) Fractions | \dfrac{2}{4} = 0.5 |
<math>\dfrac{2}{4} = 0.5</math> |
Large (nestled) Fractions | \cfrac{2}{c + \cfrac{2}{d + \cfrac{2}{4}}} = a |
<math>\cfrac{2}{c + \cfrac{2}{d + \cfrac{2}{4}}} = a</math> |
Binomial coefficients | \binom{n}{k} |
<math>\binom{n}{k}</math> |
Small Binomial coefficients | \tbinom{n}{k} |
<math>\tbinom{n}{k}</math> |
Large (normal) Binomial coefficients | \dbinom{n}{k} |
<math>\dbinom{n}{k}</math> |
Matrices | \begin{matrix} x & y \\ z & v \end{matrix} |
<math>\begin{matrix} x & y \\ z & v \end{matrix}</math> |
\begin{vmatrix} x & y \\ z & v \end{vmatrix} |
<math>\begin{vmatrix} x & y \\ z & v \end{vmatrix}</math> | |
\begin{Vmatrix} x & y \\ z & v \end{Vmatrix} |
<math>\begin{Vmatrix} x & y \\ z & v \end{Vmatrix}</math> | |
\begin{bmatrix} 0 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 0 \end{bmatrix} |
<math>\begin{bmatrix} 0 & \cdots & 0 \\ \vdots
& \ddots & \vdots \\ 0 & \cdots & 0\end{bmatrix} </math> |
|
\begin{Bmatrix} x & y \\ z & v \end{Bmatrix} |
<math>\begin{Bmatrix} x & y \\ z & v \end{Bmatrix}</math> | |
\begin{pmatrix} x & y \\ z & v \end{pmatrix} |
<math>\begin{pmatrix} x & y \\ z & v \end{pmatrix}</math> | |
\bigl( \begin{smallmatrix} a&b\\ c&d \end{smallmatrix} \bigr) |
<math>
\bigl( \begin{smallmatrix} a&b\\ c&d \end{smallmatrix} \bigr) </math> |
|
Case distinctions | f(n) = \begin{cases} n/2, & \mbox{if }n\mbox{ is even} \\ 3n+1, & \mbox{if }n\mbox{ is odd} \end{cases} |
<math>f(n) =
\begin{cases} n/2, & \mbox{if }n\mbox{ is even} \\ 3n+1, & \mbox{if }n\mbox{ is odd}\end{cases} </math> |
Multiline equations | \begin{align} f(x) & = (a+b)^2 \\ & = a^2+2ab+b^2 \\ \end{align} |
<math>
\begin{align} f(x) & = (a+b)^2 \\ & = a^2+2ab+b^2 \\ \end{align} </math> |
\begin{alignat}{2} f(x) & = (a-b)^2 \\ & = a^2-2ab+b^2 \\ \end{alignat} |
<math>
\begin{alignat}{2} f(x) & = (a-b)^2 \\ & = a^2-2ab+b^2 \\ \end{alignat} </math> |
|
Multiline equations (must define number of colums used ({lcr}) (should not be used unless needed) | \begin{array}{lcl} z & = & a \\ f(x,y,z) & = & x + y + z \end{array} |
<math>\begin{array}{lcl}
z & = & a \\ f(x,y,z) & = & x + y + z\end{array}</math> |
Multiline equations (more) | \begin{array}{lcr} z & = & a \\ f(x,y,z) & = & x + y + z \end{array} |
<math>\begin{array}{lcr}
z & = & a \\ f(x,y,z) & = & x + y + z\end{array}</math> |
Breaking up a long expression so that it wraps when necessary | <math>f(x) \,\!</math> <math>= \sum_{n=0}^\infty a_n x^n </math> <math>= a_0+a_1x+a_2x^2+\cdots</math> |
<math>f(x) \,\!</math><math>= \sum_{n=0}^\infty a_n x^n </math><math>= a_0 +a_1x+a_2x^2+\cdots</math> |
Simultaneous equations | \begin{cases} 3x + 5y + z \\ 7x - 2y + 4z \\ -6x + 3y + 2z \end{cases} |
<math>\begin{cases} 3x + 5y + z \\ 7x - 2y + 4z \\ -6x + 3y + 2z \end{cases}</math> |
Alphabets and typefaces
Greek alphabet | |
---|---|
\Alpha \Beta \Gamma \Delta \Epsilon \Zeta
|
<math>\Alpha \Beta \Gamma \Delta \Epsilon \Zeta \,\!</math> |
\Eta \Theta \Iota \Kappa \Lambda \Mu
|
<math>\Eta \Theta \Iota \Kappa \Lambda \Mu \,\!</math> |
\Nu \Xi \Pi \Rho \Sigma \Tau
|
<math>\Nu \Xi \Pi \Rho \Sigma \Tau\,\!</math> |
\Upsilon \Phi \Chi \Psi \Omega
|
<math>\Upsilon \Phi \Chi \Psi \Omega \,\!</math> |
\alpha \beta \gamma \delta \epsilon \zeta
|
<math>\alpha \beta \gamma \delta \epsilon \zeta \,\!</math> |
\eta \theta \iota \kappa \lambda \mu
|
<math>\eta \theta \iota \kappa \lambda \mu \,\!</math> |
\nu \xi \pi \rho \sigma \tau
|
<math>\nu \xi \pi \rho \sigma \tau \,\!</math> |
\upsilon \phi \chi \psi \omega
|
<math>\upsilon \phi \chi \psi \omega \,\!</math> |
\varepsilon \digamma \vartheta \varkappa
|
<math>\varepsilon \digamma \vartheta \varkappa \,\!</math> |
\varpi \varrho \varsigma \varphi
|
<math>\varpi \varrho \varsigma \varphi\,\!</math> |
Blackboard Bold/Scripts | |
\mathbb{A} \mathbb{B} \mathbb{C} \mathbb{D} \mathbb{E} \mathbb{F} \mathbb{G}
|
<math>\mathbb{A} \mathbb{B} \mathbb{C} \mathbb{D} \mathbb{E} \mathbb{F} \mathbb{G} \,\!</math> |
\mathbb{H} \mathbb{I} \mathbb{J} \mathbb{K} \mathbb{L} \mathbb{M}
|
<math>\mathbb{H} \mathbb{I} \mathbb{J} \mathbb{K} \mathbb{L} \mathbb{M} \,\!</math> |
\mathbb{N} \mathbb{O} \mathbb{P} \mathbb{Q} \mathbb{R} \mathbb{S} \mathbb{T}
|
<math>\mathbb{N} \mathbb{O} \mathbb{P} \mathbb{Q} \mathbb{R} \mathbb{S} \mathbb{T} \,\!</math> |
\mathbb{U} \mathbb{V} \mathbb{W} \mathbb{X} \mathbb{Y} \mathbb{Z}
|
<math>\mathbb{U} \mathbb{V} \mathbb{W} \mathbb{X} \mathbb{Y} \mathbb{Z}\,\!</math> |
boldface (vectors) | |
\mathbf{A} \mathbf{B} \mathbf{C} \mathbf{D} \mathbf{E} \mathbf{F} \mathbf{G}
|
<math>\mathbf{A} \mathbf{B} \mathbf{C} \mathbf{D} \mathbf{E} \mathbf{F} \mathbf{G} \,\!</math> |
\mathbf{H} \mathbf{I} \mathbf{J} \mathbf{K} \mathbf{L} \mathbf{M}
|
<math>\mathbf{H} \mathbf{I} \mathbf{J} \mathbf{K} \mathbf{L} \mathbf{M} \,\!</math> |
\mathbf{N} \mathbf{O} \mathbf{P} \mathbf{Q} \mathbf{R} \mathbf{S} \mathbf{T}
|
<math>\mathbf{N} \mathbf{O} \mathbf{P} \mathbf{Q} \mathbf{R} \mathbf{S} \mathbf{T} \,\!</math> |
\mathbf{U} \mathbf{V} \mathbf{W} \mathbf{X} \mathbf{Y} \mathbf{Z}
|
<math>\mathbf{U} \mathbf{V} \mathbf{W} \mathbf{X} \mathbf{Y} \mathbf{Z} \,\!</math> |
\mathbf{a} \mathbf{b} \mathbf{c} \mathbf{d} \mathbf{e} \mathbf{f} \mathbf{g}
|
<math>\mathbf{a} \mathbf{b} \mathbf{c} \mathbf{d} \mathbf{e} \mathbf{f} \mathbf{g} \,\!</math> |
\mathbf{h} \mathbf{i} \mathbf{j} \mathbf{k} \mathbf{l} \mathbf{m}
|
<math>\mathbf{h} \mathbf{i} \mathbf{j} \mathbf{k} \mathbf{l} \mathbf{m} \,\!</math> |
\mathbf{n} \mathbf{o} \mathbf{p} \mathbf{q} \mathbf{r} \mathbf{s} \mathbf{t}
|
<math>\mathbf{n} \mathbf{o} \mathbf{p} \mathbf{q} \mathbf{r} \mathbf{s} \mathbf{t} \,\!</math> |
\mathbf{u} \mathbf{v} \mathbf{w} \mathbf{x} \mathbf{y} \mathbf{z}
|
<math>\mathbf{u} \mathbf{v} \mathbf{w} \mathbf{x} \mathbf{y} \mathbf{z} \,\!</math> |
\mathbf{0} \mathbf{1} \mathbf{2} \mathbf{3} \mathbf{4}
|
<math>\mathbf{0} \mathbf{1} \mathbf{2} \mathbf{3} \mathbf{4} \,\!</math> |
\mathbf{5} \mathbf{6} \mathbf{7} \mathbf{8} \mathbf{9}
|
<math>\mathbf{5} \mathbf{6} \mathbf{7} \mathbf{8} \mathbf{9}\,\!</math> |
Boldface (greek) | |
\boldsymbol{\Alpha} \boldsymbol{\Beta} \boldsymbol{\Gamma} \boldsymbol{\Delta} \boldsymbol{\Epsilon} \boldsymbol{\Zeta}
|
<math>\boldsymbol{\Alpha} \boldsymbol{\Beta} \boldsymbol{\Gamma} \boldsymbol{\Delta} \boldsymbol{\Epsilon} \boldsymbol{\Zeta} \,\!</math> |
\boldsymbol{\Eta} \boldsymbol{\Theta} \boldsymbol{\Iota} \boldsymbol{\Kappa} \boldsymbol{\Lambda} \boldsymbol{\Mu}
|
<math>\boldsymbol{\Eta} \boldsymbol{\Theta} \boldsymbol{\Iota} \boldsymbol{\Kappa} \boldsymbol{\Lambda} \boldsymbol{\Mu}\,\!</math> |
\boldsymbol{\Nu} \boldsymbol{\Xi} \boldsymbol{\Pi} \boldsymbol{\Rho} \boldsymbol{\Sigma} \boldsymbol{\Tau}
|
<math>\boldsymbol{\Nu} \boldsymbol{\Xi} \boldsymbol{\Pi} \boldsymbol{\Rho} \boldsymbol{\Sigma} \boldsymbol{\Tau}\,\!</math> |
\boldsymbol{\Upsilon} \boldsymbol{\Phi} \boldsymbol{\Chi} \boldsymbol{\Psi} \boldsymbol{\Omega}
|
<math>\boldsymbol{\Upsilon} \boldsymbol{\Phi} \boldsymbol{\Chi} \boldsymbol{\Psi} \boldsymbol{\Omega}\,\!</math> |
\boldsymbol{\alpha} \boldsymbol{\beta} \boldsymbol{\gamma} \boldsymbol{\delta} \boldsymbol{\epsilon} \boldsymbol{\zeta}
|
<math>\boldsymbol{\alpha} \boldsymbol{\beta} \boldsymbol{\gamma} \boldsymbol{\delta} \boldsymbol{\epsilon} \boldsymbol{\zeta}\,\!</math> |
\boldsymbol{\eta} \boldsymbol{\theta} \boldsymbol{\iota} \boldsymbol{\kappa} \boldsymbol{\lambda} \boldsymbol{\mu}
|
<math>\boldsymbol{\eta} \boldsymbol{\theta} \boldsymbol{\iota} \boldsymbol{\kappa} \boldsymbol{\lambda} \boldsymbol{\mu}\,\!</math> |
\boldsymbol{\nu} \boldsymbol{\xi} \boldsymbol{\pi} \boldsymbol{\rho} \boldsymbol{\sigma} \boldsymbol{\tau}
|
<math>\boldsymbol{\nu} \boldsymbol{\xi} \boldsymbol{\pi} \boldsymbol{\rho} \boldsymbol{\sigma} \boldsymbol{\tau}\,\!</math> |
\boldsymbol{\upsilon} \boldsymbol{\phi} \boldsymbol{\chi} \boldsymbol{\psi} \boldsymbol{\omega}
|
<math>\boldsymbol{\upsilon} \boldsymbol{\phi} \boldsymbol{\chi} \boldsymbol{\psi} \boldsymbol{\omega}\,\!</math> |
\boldsymbol{\varepsilon} \boldsymbol{\digamma} \boldsymbol{\vartheta} \boldsymbol{\varkappa}
|
<math>\boldsymbol{\varepsilon} \boldsymbol{\digamma} \boldsymbol{\vartheta} \boldsymbol{\varkappa} \,\!</math> |
\boldsymbol{\varpi} \boldsymbol{\varrho} \boldsymbol{\varsigma} \boldsymbol{\varphi}
|
<math>\boldsymbol{\varpi} \boldsymbol{\varrho} \boldsymbol{\varsigma} \boldsymbol{\varphi}\,\!</math> |
Italics | |
\mathit{A} \mathit{B} \mathit{C} \mathit{D} \mathit{E} \mathit{F} \mathit{G}
|
<math>\mathit{A} \mathit{B} \mathit{C} \mathit{D} \mathit{E} \mathit{F} \mathit{G} \,\!</math> |
\mathit{H} \mathit{I} \mathit{J} \mathit{K} \mathit{L} \mathit{M}
|
<math>\mathit{H} \mathit{I} \mathit{J} \mathit{K} \mathit{L} \mathit{M} \,\!</math> |
\mathit{N} \mathit{O} \mathit{P} \mathit{Q} \mathit{R} \mathit{S} \mathit{T}
|
<math>\mathit{N} \mathit{O} \mathit{P} \mathit{Q} \mathit{R} \mathit{S} \mathit{T} \,\!</math> |
\mathit{U} \mathit{V} \mathit{W} \mathit{X} \mathit{Y} \mathit{Z}
|
<math>\mathit{U} \mathit{V} \mathit{W} \mathit{X} \mathit{Y} \mathit{Z} \,\!</math> |
\mathit{a} \mathit{b} \mathit{c} \mathit{d} \mathit{e} \mathit{f} \mathit{g}
|
<math>\mathit{a} \mathit{b} \mathit{c} \mathit{d} \mathit{e} \mathit{f} \mathit{g} \,\!</math> |
\mathit{h} \mathit{i} \mathit{j} \mathit{k} \mathit{l} \mathit{m}
|
<math>\mathit{h} \mathit{i} \mathit{j} \mathit{k} \mathit{l} \mathit{m} \,\!</math> |
\mathit{n} \mathit{o} \mathit{p} \mathit{q} \mathit{r} \mathit{s} \mathit{t}
|
<math>\mathit{n} \mathit{o} \mathit{p} \mathit{q} \mathit{r} \mathit{s} \mathit{t} \,\!</math> |
\mathit{u} \mathit{v} \mathit{w} \mathit{x} \mathit{y} \mathit{z}
|
<math>\mathit{u} \mathit{v} \mathit{w} \mathit{x} \mathit{y} \mathit{z} \,\!</math> |
\mathit{0} \mathit{1} \mathit{2} \mathit{3} \mathit{4}
|
<math>\mathit{0} \mathit{1} \mathit{2} \mathit{3} \mathit{4} \,\!</math> |
\mathit{5} \mathit{6} \mathit{7} \mathit{8} \mathit{9}
|
<math>\mathit{5} \mathit{6} \mathit{7} \mathit{8} \mathit{9}\,\!</math> |
Roman typeface | |
\mathrm{A} \mathrm{B} \mathrm{C} \mathrm{D} \mathrm{E} \mathrm{F} \mathrm{G}
|
<math>\mathrm{A} \mathrm{B} \mathrm{C} \mathrm{D} \mathrm{E} \mathrm{F} \mathrm{G} \,\!</math> |
\mathrm{H} \mathrm{I} \mathrm{J} \mathrm{K} \mathrm{L} \mathrm{M}
|
<math>\mathrm{H} \mathrm{I} \mathrm{J} \mathrm{K} \mathrm{L} \mathrm{M} \,\!</math> |
\mathrm{N} \mathrm{O} \mathrm{P} \mathrm{Q} \mathrm{R} \mathrm{S} \mathrm{T}
|
<math>\mathrm{N} \mathrm{O} \mathrm{P} \mathrm{Q} \mathrm{R} \mathrm{S} \mathrm{T} \,\!</math> |
\mathrm{U} \mathrm{V} \mathrm{W} \mathrm{X} \mathrm{Y} \mathrm{Z}
|
<math>\mathrm{U} \mathrm{V} \mathrm{W} \mathrm{X} \mathrm{Y} \mathrm{Z} \,\!</math> |
\mathrm{a} \mathrm{b} \mathrm{c} \mathrm{d} \mathrm{e} \mathrm{f} \mathrm{g}
|
<math>\mathrm{a} \mathrm{b} \mathrm{c} \mathrm{d} \mathrm{e} \mathrm{f} \mathrm{g}\,\!</math> |
\mathrm{h} \mathrm{i} \mathrm{j} \mathrm{k} \mathrm{l} \mathrm{m}
|
<math>\mathrm{h} \mathrm{i} \mathrm{j} \mathrm{k} \mathrm{l} \mathrm{m} \,\!</math> |
\mathrm{n} \mathrm{o} \mathrm{p} \mathrm{q} \mathrm{r} \mathrm{s} \mathrm{t}
|
<math>\mathrm{n} \mathrm{o} \mathrm{p} \mathrm{q} \mathrm{r} \mathrm{s} \mathrm{t} \,\!</math> |
\mathrm{u} \mathrm{v} \mathrm{w} \mathrm{x} \mathrm{y} \mathrm{z}
|
<math>\mathrm{u} \mathrm{v} \mathrm{w} \mathrm{x} \mathrm{y} \mathrm{z} \,\!</math> |
\mathrm{0} \mathrm{1} \mathrm{2} \mathrm{3} \mathrm{4}
|
<math>\mathrm{0} \mathrm{1} \mathrm{2} \mathrm{3} \mathrm{4} \,\!</math> |
\mathrm{5} \mathrm{6} \mathrm{7} \mathrm{8} \mathrm{9}
|
<math>\mathrm{5} \mathrm{6} \mathrm{7} \mathrm{8} \mathrm{9}\,\!</math> |
Fraktur typeface | |
\mathfrak{A} \mathfrak{B} \mathfrak{C} \mathfrak{D} \mathfrak{E} \mathfrak{F} \mathfrak{G}
|
<math>\mathfrak{A} \mathfrak{B} \mathfrak{C} \mathfrak{D} \mathfrak{E} \mathfrak{F} \mathfrak{G} \,\!</math> |
\mathfrak{H} \mathfrak{I} \mathfrak{J} \mathfrak{K} \mathfrak{L} \mathfrak{M}
|
<math>\mathfrak{H} \mathfrak{I} \mathfrak{J} \mathfrak{K} \mathfrak{L} \mathfrak{M} \,\!</math> |
\mathfrak{N} \mathfrak{O} \mathfrak{P} \mathfrak{Q} \mathfrak{R} \mathfrak{S} \mathfrak{T}
|
<math>\mathfrak{N} \mathfrak{O} \mathfrak{P} \mathfrak{Q} \mathfrak{R} \mathfrak{S} \mathfrak{T} \,\!</math> |
\mathfrak{U} \mathfrak{V} \mathfrak{W} \mathfrak{X} \mathfrak{Y} \mathfrak{Z}
|
<math>\mathfrak{U} \mathfrak{V} \mathfrak{W} \mathfrak{X} \mathfrak{Y} \mathfrak{Z} \,\!</math> |
\mathfrak{a} \mathfrak{b} \mathfrak{c} \mathfrak{d} \mathfrak{e} \mathfrak{f} \mathfrak{g}
|
<math>\mathfrak{a} \mathfrak{b} \mathfrak{c} \mathfrak{d} \mathfrak{e} \mathfrak{f} \mathfrak{g} \,\!</math> |
\mathfrak{h} \mathfrak{i} \mathfrak{j} \mathfrak{k} \mathfrak{l} \mathfrak{m}
|
<math>\mathfrak{h} \mathfrak{i} \mathfrak{j} \mathfrak{k} \mathfrak{l} \mathfrak{m} \,\!</math> |
\mathfrak{n} \mathfrak{o} \mathfrak{p} \mathfrak{q} \mathfrak{r} \mathfrak{s} \mathfrak{t}
|
<math>\mathfrak{n} \mathfrak{o} \mathfrak{p} \mathfrak{q} \mathfrak{r} \mathfrak{s} \mathfrak{t} \,\!</math> |
\mathfrak{u} \mathfrak{v} \mathfrak{w} \mathfrak{x} \mathfrak{y} \mathfrak{z}
|
<math>\mathfrak{u} \mathfrak{v} \mathfrak{w} \mathfrak{x} \mathfrak{y} \mathfrak{z} \,\!</math> |
\mathfrak{0} \mathfrak{1} \mathfrak{2} \mathfrak{3} \mathfrak{4}
|
<math>\mathfrak{0} \mathfrak{1} \mathfrak{2} \mathfrak{3} \mathfrak{4} \,\!</math> |
\mathfrak{5} \mathfrak{6} \mathfrak{7} \mathfrak{8} \mathfrak{9}
|
<math>\mathfrak{5} \mathfrak{6} \mathfrak{7} \mathfrak{8} \mathfrak{9}\,\!</math> |
Calligraphy/Script | |
\mathcal{A} \mathcal{B} \mathcal{C} \mathcal{D} \mathcal{E} \mathcal{F} \mathcal{G}
|
<math>\mathcal{A} \mathcal{B} \mathcal{C} \mathcal{D} \mathcal{E} \mathcal{F} \mathcal{G} \,\!</math> |
\mathcal{H} \mathcal{I} \mathcal{J} \mathcal{K} \mathcal{L} \mathcal{M}
|
<math>\mathcal{H} \mathcal{I} \mathcal{J} \mathcal{K} \mathcal{L} \mathcal{M} \,\!</math> |
\mathcal{N} \mathcal{O} \mathcal{P} \mathcal{Q} \mathcal{R} \mathcal{S} \mathcal{T}
|
<math>\mathcal{N} \mathcal{O} \mathcal{P} \mathcal{Q} \mathcal{R} \mathcal{S} \mathcal{T} \,\!</math> |
\mathcal{U} \mathcal{V} \mathcal{W} \mathcal{X} \mathcal{Y} \mathcal{Z}
|
<math>\mathcal{U} \mathcal{V} \mathcal{W} \mathcal{X} \mathcal{Y} \mathcal{Z}\,\!</math> |
Hebrew | |
\aleph \beth \gimel \daleth
|
<math>\aleph \beth \gimel \daleth\,\!</math> |
Feature | Syntax | How it looks rendered | |
---|---|---|---|
non-italicised characters | \mbox{abc} | <math>\mbox{abc}</math> | <math>\mbox{abc} \,\!</math> |
mixed italics (bad) | \mbox{if} n \mbox{is even} | <math>\mbox{if} n \mbox{is even}</math> | <math>\mbox{if} n \mbox{is even} \,\!</math> |
mixed italics (good) | \mbox{if }n\mbox{ is even} | <math>\mbox{if }n\mbox{ is even}</math> | <math>\mbox{if }n\mbox{ is even} \,\!</math> |
mixed italics (more legible: ~ is a non-breaking space, while "\ " forces a space) | \mbox{if}~n\ \mbox{is even} | <math>\mbox{if}~n\ \mbox{is even}</math> | <math>\mbox{if}~n\ \mbox{is even} \,\!</math> |
Parenthesizing big expressions, brackets, bars
Feature | Syntax | How it looks rendered |
---|---|---|
Bad | ( \frac{1}{2} ) | <math>( \frac{1}{2} )</math> |
Good | \left ( \frac{1}{2} \right ) | <math>\left ( \frac{1}{2} \right )</math> |
You can use various delimiters with \left and \right:
Feature | Syntax | How it looks rendered | |
---|---|---|---|
Parentheses | \left ( \frac{a}{b} \right ) | <math>\left ( \frac{a}{b} \right )</math> | |
Brackets | \left [ \frac{a}{b} \right ] \quad \left \lbrack \frac{a}{b} \right \rbrack | <math>\left [ \frac{a}{b} \right ] \quad \left \lbrack \frac{a}{b} \right \rbrack</math> | |
Braces | \left \{ \frac{a}{b} \right \} \quad \left \lbrace \frac{a}{b} \right \rbrace | <math>\left \{ \frac{a}{b} \right \} \quad \left \lbrace \frac{a}{b} \right \rbrace</math> | |
Angle brackets | \left \langle \frac{a}{b} \right \rangle | <math>\left \langle \frac{a}{b} \right \rangle</math> | |
Bars and double bars | \left | \frac{a}{b} \right \vert \left \Vert \frac{c}{d} \right \| | <math>\left | \frac{a}{b} \right \vert \left \Vert \frac{c}{d} \right \|</math> | |
Floor and ceiling functions: | \left \lfloor \frac{a}{b} \right \rfloor \left \lceil \frac{c}{d} \right \rceil | <math>\left \lfloor \frac{a}{b} \right \rfloor \left \lceil \frac{c}{d} \right \rceil</math> | |
Slashes and backslashes | \left / \frac{a}{b} \right \backslash | <math>\left / \frac{a}{b} \right \backslash</math> | |
Up, down and up-down arrows | \left \uparrow \frac{a}{b} \right \downarrow \quad \left \Uparrow \frac{a}{b} \right \Downarrow \quad \left \updownarrow \frac{a}{b} \right \Updownarrow | <math>\left \uparrow \frac{a}{b} \right \downarrow \quad \left \Uparrow \frac{a}{b} \right \Downarrow \quad \left \updownarrow \frac{a}{b} \right \Updownarrow</math> | |
Delimiters can be mixed, |
\left [ 0,1 \right ) |
<math>\left [ 0,1 \right )</math> |
|
Use \left. and \right. if you don't want a delimiter to appear: |
\left . \frac{A}{B} \right \} \to X | <math>\left . \frac{A}{B} \right \} \to X</math> | |
Size of the delimiters | \big( \Big( \bigg( \Bigg( ... \Bigg] \bigg] \Big] \big] |
<math>\big( \Big( \bigg( \Bigg( ... \Bigg] \bigg] \Big] \big]</math> |
|
\big\{ \Big\{ \bigg\{ \Bigg\{ ... \Bigg\rangle \bigg\rangle \Big\rangle \big\rangle |
<math>\big\{ \Big\{ \bigg\{ \Bigg\{ ... \Bigg\rangle \bigg\rangle \Big\rangle \big\rangle</math> |
||
\big\| \Big\| \bigg\| \Bigg\| ... \Bigg| \bigg| \Big| \big| | <math>\big\| \Big\| \bigg\| \Bigg\| ... \Bigg| \bigg| \Big| \big|</math> | ||
\big\lfloor \Big\lfloor \bigg\lfloor \Bigg\lfloor ... \Bigg\rceil \bigg\rceil \Big\rceil \big\rceil |
<math>\big\lfloor \Big\lfloor \bigg\lfloor \Bigg\lfloor ... \Bigg\rceil \bigg\rceil \Big\rceil \big\rceil</math> |
||
\big\uparrow \Big\uparrow \bigg\uparrow \Bigg\uparrow ... \Bigg\Downarrow \bigg\Downarrow \Big\Downarrow \big\Downarrow |
<math>\big\uparrow \Big\uparrow \bigg\uparrow \Bigg\uparrow ... \Bigg\Downarrow \bigg\Downarrow \Big\Downarrow \big\Downarrow</math> |
||
\big\updownarrow \Big\updownarrow \bigg\updownarrow \Bigg\updownarrow ... \Bigg\Updownarrow \bigg\Updownarrow \Big\Updownarrow \big\Updownarrow |
<math>\big\updownarrow \Big\updownarrow \bigg\updownarrow \Bigg\updownarrow ... \Bigg\Updownarrow \bigg\Updownarrow \Big\Updownarrow \big\Updownarrow</math> |
||
\big / \Big / \bigg / \Bigg / ... \Bigg\backslash \bigg\backslash \Big\backslash \big\backslash |
<math>\big / \Big / \bigg / \Bigg / ... \Bigg\backslash \bigg\backslash \Big\backslash \big\backslash</math> |
Spacing
Note that TeX handles most spacing automatically, but you may sometimes want manual control.
Feature | Syntax | How it looks rendered |
---|---|---|
double quad space | a \qquad b | <math>a \qquad b</math> |
quad space | a \quad b | <math>a \quad b</math> |
text space | a\ b | <math>a\ b</math> |
text space without PNG conversion | a \mbox{ } b | <math>a \mbox{ } b</math> |
large space | a\;b | <math>a\;b</math> |
medium space | a\>b | [not supported] |
small space | a\,b | <math>a\,b</math> |
no space | ab | <math>ab\,</math> |
small negative space | a\!b | <math>a\!b</math> |
Align with normal text flow
Due to the default css
img.tex { vertical-align: middle; }
an inline expression like <math>\int_{-N}^{N} e^x\, dx = 2 \sinh N</math> should look good.
If you need to align it otherwise, use <font style="vertical-align:-100%;"><math>...</math></font>
and play with the vertical-align
argument until you get it right; however, how it looks may depend on the browser and the browser settings.
Also note that if you rely on this workaround, if/when the rendering on the server gets fixed in future releases, as a result of this extra manual offset your formulae will suddenly be aligned incorrectly. So use it sparingly, if at all.
Forced PNG rendering
To force the formula to render as PNG, add \,
(small space) at the end of the formula (where it is not rendered). This will force PNG if the user is in "HTML if simple" mode, but not for "HTML if possible" mode (math rendering settings in preferences).
You can also use \,\!
(small space and negative space, which cancel out) anywhere inside the math tags. This does force PNG even in "HTML if possible" mode, unlike \,
.
This could be useful to keep the rendering of formulae in a proof consistent, for example, or to fix formulae that render incorrectly in HTML (at one time, a^{2+2} rendered with an extra underscore), or to demonstrate how something is rendered when it would normally show up as HTML (as in the examples above).
For instance:
Syntax | How it looks rendered |
---|---|
a^{c+2} | <math>a^{c+2}</math> |
a^{c+2} \, | <math>a^{c+2} \,</math> |
a^{\,\!c+2} | <math>a^{\,\!c+2}</math> |
a^{b^{c+2}} | <math>a^{b^{c+2}}</math> (WRONG with option "HTML if possible or else PNG"!) |
a^{b^{c+2}} \, | <math>a^{b^{c+2}} \,</math> (WRONG with option "HTML if possible or else PNG"!) |
a^{b^{c+2}}\approx 5 | <math>a^{b^{c+2}}\approx 5</math> (due to "<math>\approx</math>" correctly displayed, no code "\,\!" needed) |
a^{b^{\,\!c+2}} | <math>a^{b^{\,\!c+2}}</math> |
\int_{-N}^{N} e^x\, dx | <math>\int_{-N}^{N} e^x\, dx</math> |