Διαφορά μεταξύ των αναθεωρήσεων του «Maths»
(→Color) |
|||
Γραμμή 1: | Γραμμή 1: | ||
− | |||
− | |||
== Functions, symbols, special characters == | == Functions, symbols, special characters == | ||
Γραμμή 1.087: | Γραμμή 1.085: | ||
See here for [http://oregonstate.edu/%7Epeterseb/tex/samples/docs/color-package-demo.pdf all named colours] supported by LaTeX. | See here for [http://oregonstate.edu/%7Epeterseb/tex/samples/docs/color-package-demo.pdf all named colours] supported by LaTeX. | ||
− | |||
− | |||
== Examples == | == Examples == |
Τελευταία αναθεώρηση της 05:05, 10 Νοεμβρίου 2007
Functions, symbols, special characters[επεξεργασία]
Accents/Diacritics | |
---|---|
\acute{a} \grave{a} \hat{a} \tilde{a} \breve{a}
|
<math>\acute{a} \grave{a} \hat{a} \tilde{a} \breve{a}\,\!</math> |
\check{a} \bar{a} \ddot{a} \dot{a}
|
<math>\check{a} \bar{a} \ddot{a} \dot{a}\,\!</math> |
Standard functions | |
\sin a \cos b \tan c
|
<math>\sin a \cos b \tan c\,\!</math> |
\sec d \csc e \cot f
|
<math>\sec d \csc e \cot f\,\!</math> |
\arcsin h \arccos i \arctan j
|
<math>\arcsin h \arccos i \arctan j\,\!</math> |
\sinh k \cosh l \tanh m \coth n
|
<math>\sinh k \cosh l \tanh m \coth n\,\!</math> |
\operatorname{sh}o \operatorname{ch}p \operatorname{th}q
|
<math>\operatorname{sh}o \operatorname{ch}p \operatorname{th}q\,\!</math> |
\operatorname{argsh}r \operatorname{argch}s \operatorname{argth}t
|
<math>\operatorname{argsh}r \operatorname{argch}s \operatorname{argth}t\,\!</math> |
\lim u \limsup v \liminf w \min x \max y
|
<math>\lim u \limsup v \liminf w \min x \max y\,\!</math> |
\inf z \sup a \exp b \ln c \lg d \log e \log_{10} f \ker g
|
<math>\inf z \sup a \exp b \ln c \lg d \log e \log_{10} f \ker g\,\!</math> |
\deg h \gcd i \Pr j \det k \hom l \arg m \dim n
|
<math>\deg h \gcd i \Pr j \det k \hom l \arg m \dim n\,\!</math> |
Modular arithmetic | |
s_k \equiv 0 \pmod{m} a \bmod b
|
<math>s_k \equiv 0 \pmod{m} a \bmod b\,\!</math> |
Derivatives | |
\nabla \partial x dx \dot x \ddot y
|
<math>\nabla \partial x dx \dot x \ddot y\,\!</math> |
Sets | |
\forall \exists \empty \emptyset \varnothing
|
<math>\forall \exists \empty \emptyset \varnothing\,\!</math> |
\in \ni \not \in \notin \subset \subseteq \subsetneq \supset \supseteq \supsetneq
|
<math>\in \ni \not \in \notin \subset \subseteq \subsetneq \supset \supseteq \supsetneq\,\!</math> |
\cap \bigcap \cup \bigcup \biguplus \setminus \smallsetminus
|
<math>\cap \bigcap \cup \bigcup \biguplus \setminus \smallsetminus\,\!</math> |
\sqsubset \sqsubseteq \sqsupset \sqsupseteq \sqcap \sqcup \bigsqcup
|
<math>\sqsubset \sqsubseteq \sqsupset \sqsupseteq \sqcap \sqcup \bigsqcup\,\!</math> |
Operators | |
+ \oplus \bigoplus \pm \mp -
|
<math>+ \oplus \bigoplus \pm \mp - \,\!</math> |
\times \otimes \bigotimes \cdot \circ \bullet \bigodot
|
<math>\times \otimes \bigotimes \cdot \circ \bullet \bigodot\,\!</math> |
\star * / \div \frac{1}{2}
|
<math>\star * / \div \frac{1}{2}\,\!</math> |
Logic | |
\land \wedge \bigwedge \bar{q} \to p
|
<math>\land \wedge \bigwedge \bar{q} \to p\,\!</math> |
\lor \vee \bigvee \lnot \neg q \And
|
<math>\lor \vee \bigvee \lnot \neg q \And\,\!</math> |
Root | |
\sqrt{2} \sqrt[n]{x}
|
<math>\sqrt{2} \sqrt[n]{x}\,\!</math> |
Relations | |
\sim \approx \simeq \cong \dot= \overset{\underset{\mathrm{def}}{}}{=}
|
<math>\sim \approx \simeq \cong \dot= \overset{\underset{\mathrm{def}}{}}{=}\,\!</math> |
\le < \ll \gg \ge > \equiv \not\equiv \ne \mbox{or} \neq \propto
|
<math>\le < \ll \gg \ge > \equiv \not\equiv \ne \mbox{or} \neq \propto\,\!</math> |
Geometric | |
\Diamond \Box \triangle \angle \perp \mid \nmid \| 45^\circ
|
45^\circ\,\!</math> |
Arrows | |
\leftarrow \gets \rightarrow \to \not\to \leftrightarrow \longleftarrow \longrightarrow
|
<math>\leftarrow \gets \rightarrow \to \not\to \leftrightarrow \longleftarrow \longrightarrow\,\!</math> |
\mapsto \longmapsto \hookrightarrow \hookleftarrow \nearrow \searrow \swarrow \nwarrow
|
<math>\mapsto \longmapsto \hookrightarrow \hookleftarrow \nearrow \searrow \swarrow \nwarrow\,\!</math> |
\uparrow \downarrow \updownarrow \rightharpoonup \rightharpoondown \leftharpoonup \leftharpoondown \upharpoonleft
|
<math>\uparrow \downarrow \updownarrow \rightharpoonup \rightharpoondown \leftharpoonup \leftharpoondown \upharpoonleft\,\!</math> |
\upharpoonright \downharpoonleft \downharpoonright \rightleftharpoons \Leftarrow \Rightarrow \Leftrightarrow \Longleftarrow
|
<math>\upharpoonright \downharpoonleft \downharpoonright \rightleftharpoons \Leftarrow \Rightarrow \Leftrightarrow \Longleftarrow\,\!</math> |
\Longrightarrow \Longleftrightarrow (or \iff) \Uparrow \Downarrow \Updownarrow \leftleftarrows \leftrightarrows \Lleftarrow \leftarrowtail \looparrowleft
|
<math>\Longrightarrow \Longleftrightarrow \Uparrow \Downarrow \Updownarrow \leftleftarrows \leftrightarrows \Lleftarrow \leftarrowtail \looparrowleft \,\!</math> |
\leftrightharpoons \curvearrowleft \circlearrowleft \Lsh \upuparrows \rightrightarrows \rightleftarrows \Rrightarrow \rightarrowtail \looparrowright
|
<math>\leftrightharpoons \curvearrowleft \circlearrowleft \Lsh \upuparrows \rightrightarrows \rightleftarrows \Rrightarrow \rightarrowtail \looparrowright\,\!</math> |
\curvearrowright \circlearrowright \Rsh \downdownarrows \multimap \leftrightsquigarrow \rightsquigarrow \nLeftarrow \nleftrightarrow \nRightarrow
|
<math>\curvearrowright \circlearrowright \Rsh \downdownarrows \multimap \leftrightsquigarrow \rightsquigarrow \nLeftarrow \nleftrightarrow \nRightarrow\,\!</math> |
\nLeftrightarrow \longleftrightarrow
|
<math>\nLeftrightarrow \longleftrightarrow\,\!</math> |
Special | |
\eth \S \P \% \dagger \ddagger \ldots \cdots
|
<math>\eth \S \P \% \dagger \ddagger \ldots \cdots\,\!</math> |
\smile \frown \wr \triangleleft \triangleright \infty \bot \top
|
<math>\smile \frown \wr \triangleleft \triangleright \infty \bot \top\,\!</math> |
\vdash \vDash \Vdash \models \lVert \rVert \imath \hbar
|
<math>\vdash \vDash \Vdash \models \lVert \rVert \imath \hbar\,\!</math> |
\ell \mho \Finv \Re \Im \wp \complement \diamondsuit
|
<math>\ell \mho \Finv \Re \Im \wp \complement \diamondsuit\,\!</math> |
\heartsuit \clubsuit \spadesuit \Game \flat \natural \sharp
|
<math>\heartsuit \clubsuit \spadesuit \Game \flat \natural \sharp\,\!</math> |
Unsorted (new stuff) | |
\vartriangle \triangledown \lozenge \circledS \measuredangle \nexists \Bbbk \backprime \blacktriangle \blacktriangledown
|
<math> \vartriangle \triangledown \lozenge \circledS \measuredangle \nexists \Bbbk \backprime \blacktriangle \blacktriangledown</math> |
\blacksquare \blacklozenge \bigstar \sphericalangle \diagup \diagdown \dotplus \Cap \Cup \barwedge
|
<math> \blacksquare \blacklozenge \bigstar \sphericalangle \diagup \diagdown \dotplus \Cap \Cup \barwedge</math> |
\veebar \doublebarwedge \boxminus \boxtimes \boxdot \boxplus \divideontimes \ltimes \rtimes \leftthreetimes
|
<math> \veebar \doublebarwedge \boxminus \boxtimes \boxdot \boxplus \divideontimes \ltimes \rtimes \leftthreetimes</math> |
\rightthreetimes \curlywedge \curlyvee \circleddash \circledast \circledcirc \centerdot \intercal \leqq \leqslant
|
<math> \rightthreetimes \curlywedge \curlyvee \circleddash \circledast \circledcirc \centerdot \intercal \leqq \leqslant</math> |
\eqslantless \lessapprox \approxeq \lessdot \lll \lessgtr \lesseqgtr \lesseqqgtr \doteqdot \risingdotseq
|
<math> \eqslantless \lessapprox \approxeq \lessdot \lll \lessgtr \lesseqgtr \lesseqqgtr \doteqdot \risingdotseq</math> |
\fallingdotseq \backsim \backsimeq \subseteqq \Subset \preccurlyeq \curlyeqprec \precsim \precapprox \vartriangleleft
|
<math> \fallingdotseq \backsim \backsimeq \subseteqq \Subset \preccurlyeq \curlyeqprec \precsim \precapprox \vartriangleleft</math> |
\Vvdash \bumpeq \Bumpeq \geqq \geqslant \eqslantgtr \gtrsim \gtrapprox \eqsim \gtrdot
|
<math> \Vvdash \bumpeq \Bumpeq \geqq \geqslant \eqslantgtr \gtrsim \gtrapprox \eqsim \gtrdot</math> |
\ggg \gtrless \gtreqless \gtreqqless \eqcirc \circeq \triangleq \thicksim \thickapprox \supseteqq
|
<math> \ggg \gtrless \gtreqless \gtreqqless \eqcirc \circeq \triangleq \thicksim \thickapprox \supseteqq</math> |
\Supset \succcurlyeq \curlyeqsucc \succsim \succapprox \vartriangleright \shortmid \shortparallel \between \pitchfork
|
<math> \Supset \succcurlyeq \curlyeqsucc \succsim \succapprox \vartriangleright \shortmid \shortparallel \between \pitchfork</math> |
\varpropto \blacktriangleleft \therefore \backepsilon \blacktriangleright \because \nleqslant \nleqq \lneq \lneqq
|
<math> \varpropto \blacktriangleleft \therefore \backepsilon \blacktriangleright \because \nleqslant \nleqq \lneq \lneqq</math> |
\lvertneqq \lnsim \lnapprox \nprec \npreceq \precneqq \precnsim \precnapprox \nsim \nshortmid
|
<math> \lvertneqq \lnsim \lnapprox \nprec \npreceq \precneqq \precnsim \precnapprox \nsim \nshortmid</math> |
\nvdash \nVdash \ntriangleleft \ntrianglelefteq \nsubseteq \nsubseteqq \varsubsetneq \subsetneqq \varsubsetneqq \ngtr
|
<math> \nvdash \nVdash \ntriangleleft \ntrianglelefteq \nsubseteq \nsubseteqq \varsubsetneq \subsetneqq \varsubsetneqq \ngtr</math> |
\ngeqslant \ngeqq \gneq \gneqq \gvertneqq \gnsim \gnapprox \nsucc \nsucceq \succneqq
|
<math> \ngeqslant \ngeqq \gneq \gneqq \gvertneqq \gnsim \gnapprox \nsucc \nsucceq \succneqq</math> |
\succnsim \succnapprox \ncong \nshortparallel \nparallel \nvDash \nVDash \ntriangleright \ntrianglerighteq \nsupseteq
|
<math> \succnsim \succnapprox \ncong \nshortparallel \nparallel \nvDash \nVDash \ntriangleright \ntrianglerighteq \nsupseteq</math> |
\nsupseteqq \varsupsetneq \supsetneqq \varsupsetneqq
|
<math> \nsupseteqq \varsupsetneq \supsetneqq \varsupsetneqq</math> |
\jmath \surd \ast \uplus \diamond \bigtriangleup \bigtriangledown \ominus
|
<math>\jmath \surd \ast \uplus \diamond \bigtriangleup \bigtriangledown \ominus\,\!</math> |
\oslash \odot \bigcirc \amalg \prec \succ \preceq \succeq
|
<math>\oslash \odot \bigcirc \amalg \prec \succ \preceq \succeq\,\!</math> |
\dashv \asymp \doteq \parallel
|
<math>\dashv \asymp \doteq \parallel\,\!</math> |
Subscripts, superscripts, integrals[επεξεργασία]
Feature | Syntax | How it looks rendered | |
---|---|---|---|
HTML | PNG | ||
Superscript | a^2 |
<math>a^2</math> | <math>a^2 \,\!</math> |
Subscript | a_2 |
<math>a_2</math> | <math>a_2 \,\!</math> |
Grouping | a^{2+2} |
<math>a^{2+2}</math> | <math>a^{2+2}\,\!</math> |
a_{i,j} |
<math>a_{i,j}</math> | <math>a_{i,j}\,\!</math> | |
Combining sub & super | x_2^3 |
<math>x_2^3</math> | |
Preceding and/or Additional sub & super | \sideset{_1^2}{_3^4}\prod_a^b |
<math>\sideset{_1^2}{_3^4}\prod_a^b</math> | |
{}_1^2\!\Omega_3^4 |
<math>{}_1^2\!\Omega_3^4</math> | ||
Stacking | \overset{\alpha}{\omega} |
<math>\overset{\alpha}{\omega}</math> | |
\underset{\alpha}{\omega} |
<math>\underset{\alpha}{\omega}</math> | ||
\overset{\alpha}{\underset{\gamma}{\omega}} |
<math>\overset{\alpha}{\underset{\gamma}{\omega}}</math> | ||
\stackrel{\alpha}{\omega} |
<math>\stackrel{\alpha}{\omega}</math> | ||
Derivative (forced PNG) | x', y'', f', f''\! |
<math>x', y, f', f\!</math> | |
Derivative (f in italics may overlap primes in HTML) | x', y'', f', f'' |
<math>x', y, f', f</math> | <math>x', y, f', f\!</math> |
Derivative (wrong in HTML) | x^\prime, y^{\prime\prime} |
<math>x^\prime, y^{\prime\prime}</math> | <math>x^\prime, y^{\prime\prime}\,\!</math> |
Derivative (wrong in PNG) | x\prime, y\prime\prime |
<math>x\prime, y\prime\prime</math> | <math>x\prime, y\prime\prime\,\!</math> |
Derivative dots | \dot{x}, \ddot{x} |
<math>\dot{x}, \ddot{x}</math> | |
Underlines, overlines, vectors | \hat a \ \bar b \ \vec c |
<math>\hat a \ \bar b \ \vec c</math> | |
\overrightarrow{a b} \ \overleftarrow{c d} \ \widehat{d e f} |
<math>\overrightarrow{a b} \ \overleftarrow{c d} \ \widehat{d e f}</math> | ||
\overline{g h i} \ \underline{j k l} |
<math>\overline{g h i} \ \underline{j k l}</math> | ||
Arrows | A \xleftarrow{n+\mu-1} B \xrightarrow[T]{n\pm i-1} C |
<math> A \xleftarrow{n+\mu-1} B \xrightarrow[T]{n\pm i-1} C</math> | |
Overbraces | \overbrace{ 1+2+\cdots+100 }^{5050} |
<math>\overbrace{ 1+2+\cdots+100 }^{5050}</math> | |
Underbraces | \underbrace{ a+b+\cdots+z }_{26} |
<math>\underbrace{ a+b+\cdots+z }_{26}</math> | |
Sum | \sum_{k=1}^N k^2 |
<math>\sum_{k=1}^N k^2</math> | |
Sum (force \textstyle ) |
\textstyle \sum_{k=1}^N k^2 |
<math>\textstyle \sum_{k=1}^N k^2</math> | |
Product | \prod_{i=1}^N x_i |
<math>\prod_{i=1}^N x_i</math> | |
Product (force \textstyle ) |
\textstyle \prod_{i=1}^N x_i |
<math>\textstyle \prod_{i=1}^N x_i</math> | |
Coproduct | \coprod_{i=1}^N x_i |
<math>\coprod_{i=1}^N x_i</math> | |
Coproduct (force \textstyle ) |
\textstyle \coprod_{i=1}^N x_i |
<math>\textstyle \coprod_{i=1}^N x_i</math> | |
Limit | \lim_{n \to \infty}x_n |
<math>\lim_{n \to \infty}x_n</math> | |
Limit (force \textstyle ) |
\textstyle \lim_{n \to \infty}x_n |
<math>\textstyle \lim_{n \to \infty}x_n</math> | |
Integral | \int_{-N}^{N} e^x\, dx |
<math>\int_{-N}^{N} e^x\, dx</math> | |
Integral (force \textstyle ) |
\textstyle \int_{-N}^{N} e^x\, dx |
<math>\textstyle \int_{-N}^{N} e^x\, dx</math> | |
Double integral | \iint_{D}^{W} \, dx\,dy |
<math>\iint_{D}^{W} \, dx\,dy</math> | |
Triple integral | \iiint_{E}^{V} \, dx\,dy\,dz |
<math>\iiint_{E}^{V} \, dx\,dy\,dz</math> | |
Quadruple integral | \iiiint_{F}^{U} \, dx\,dy\,dz\,dt |
<math>\iiiint_{F}^{U} \, dx\,dy\,dz\,dt</math> | |
Path integral | \oint_{C} x^3\, dx + 4y^2\, dy |
<math>\oint_{C} x^3\, dx + 4y^2\, dy</math> | |
Intersections | \bigcap_1^{n} p |
<math>\bigcap_1^{n} p</math> | |
Unions | \bigcup_1^{k} p |
<math>\bigcup_1^{k} p</math> |
Fractions, matrices, multilines[επεξεργασία]
Feature | Syntax | How it looks rendered |
---|---|---|
Fractions | \frac{2}{4}=0.5 |
<math>\frac{2}{4}=0.5</math> |
Small Fractions | \tfrac{2}{4} = 0.5 |
<math>\tfrac{2}{4} = 0.5</math> |
Large (normal) Fractions | \dfrac{2}{4} = 0.5 |
<math>\dfrac{2}{4} = 0.5</math> |
Large (nestled) Fractions | \cfrac{2}{c + \cfrac{2}{d + \cfrac{2}{4}}} = a |
<math>\cfrac{2}{c + \cfrac{2}{d + \cfrac{2}{4}}} = a</math> |
Binomial coefficients | \binom{n}{k} |
<math>\binom{n}{k}</math> |
Small Binomial coefficients | \tbinom{n}{k} |
<math>\tbinom{n}{k}</math> |
Large (normal) Binomial coefficients | \dbinom{n}{k} |
<math>\dbinom{n}{k}</math> |
Matrices | \begin{matrix} x & y \\ z & v \end{matrix} |
<math>\begin{matrix} x & y \\ z & v \end{matrix}</math> |
\begin{vmatrix} x & y \\ z & v \end{vmatrix} |
<math>\begin{vmatrix} x & y \\ z & v \end{vmatrix}</math> | |
\begin{Vmatrix} x & y \\ z & v \end{Vmatrix} |
<math>\begin{Vmatrix} x & y \\ z & v \end{Vmatrix}</math> | |
\begin{bmatrix} 0 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 0 \end{bmatrix} |
<math>\begin{bmatrix} 0 & \cdots & 0 \\ \vdots
& \ddots & \vdots \\ 0 & \cdots & 0\end{bmatrix} </math> |
|
\begin{Bmatrix} x & y \\ z & v \end{Bmatrix} |
<math>\begin{Bmatrix} x & y \\ z & v \end{Bmatrix}</math> | |
\begin{pmatrix} x & y \\ z & v \end{pmatrix} |
<math>\begin{pmatrix} x & y \\ z & v \end{pmatrix}</math> | |
\bigl( \begin{smallmatrix} a&b\\ c&d \end{smallmatrix} \bigr) |
<math>
\bigl( \begin{smallmatrix} a&b\\ c&d \end{smallmatrix} \bigr) </math> |
|
Case distinctions | f(n) = \begin{cases} n/2, & \mbox{if }n\mbox{ is even} \\ 3n+1, & \mbox{if }n\mbox{ is odd} \end{cases} |
<math>f(n) =
\begin{cases} n/2, & \mbox{if }n\mbox{ is even} \\ 3n+1, & \mbox{if }n\mbox{ is odd}\end{cases} </math> |
Multiline equations | \begin{align} f(x) & = (a+b)^2 \\ & = a^2+2ab+b^2 \\ \end{align} |
<math>
\begin{align} f(x) & = (a+b)^2 \\ & = a^2+2ab+b^2 \\ \end{align} </math> |
\begin{alignat}{2} f(x) & = (a-b)^2 \\ & = a^2-2ab+b^2 \\ \end{alignat} |
<math>
\begin{alignat}{2} f(x) & = (a-b)^2 \\ & = a^2-2ab+b^2 \\ \end{alignat} </math> |
|
Multiline equations (must define number of colums used ({lcr}) (should not be used unless needed) | \begin{array}{lcl} z & = & a \\ f(x,y,z) & = & x + y + z \end{array} |
<math>\begin{array}{lcl}
z & = & a \\ f(x,y,z) & = & x + y + z\end{array}</math> |
Multiline equations (more) | \begin{array}{lcr} z & = & a \\ f(x,y,z) & = & x + y + z \end{array} |
<math>\begin{array}{lcr}
z & = & a \\ f(x,y,z) & = & x + y + z\end{array}</math> |
Breaking up a long expression so that it wraps when necessary | <math>f(x) \,\!</math> <math>= \sum_{n=0}^\infty a_n x^n </math> <math>= a_0+a_1x+a_2x^2+\cdots</math> |
<math>f(x) \,\!</math><math>= \sum_{n=0}^\infty a_n x^n </math><math>= a_0 +a_1x+a_2x^2+\cdots</math> |
Simultaneous equations | \begin{cases} 3x + 5y + z \\ 7x - 2y + 4z \\ -6x + 3y + 2z \end{cases} |
<math>\begin{cases} 3x + 5y + z \\ 7x - 2y + 4z \\ -6x + 3y + 2z \end{cases}</math> |
Alphabets and typefaces[επεξεργασία]
Greek alphabet | |
---|---|
\Alpha \Beta \Gamma \Delta \Epsilon \Zeta
|
<math>\Alpha \Beta \Gamma \Delta \Epsilon \Zeta \,\!</math> |
\Eta \Theta \Iota \Kappa \Lambda \Mu
|
<math>\Eta \Theta \Iota \Kappa \Lambda \Mu \,\!</math> |
\Nu \Xi \Pi \Rho \Sigma \Tau
|
<math>\Nu \Xi \Pi \Rho \Sigma \Tau\,\!</math> |
\Upsilon \Phi \Chi \Psi \Omega
|
<math>\Upsilon \Phi \Chi \Psi \Omega \,\!</math> |
\alpha \beta \gamma \delta \epsilon \zeta
|
<math>\alpha \beta \gamma \delta \epsilon \zeta \,\!</math> |
\eta \theta \iota \kappa \lambda \mu
|
<math>\eta \theta \iota \kappa \lambda \mu \,\!</math> |
\nu \xi \pi \rho \sigma \tau
|
<math>\nu \xi \pi \rho \sigma \tau \,\!</math> |
\upsilon \phi \chi \psi \omega
|
<math>\upsilon \phi \chi \psi \omega \,\!</math> |
\varepsilon \digamma \vartheta \varkappa
|
<math>\varepsilon \digamma \vartheta \varkappa \,\!</math> |
\varpi \varrho \varsigma \varphi
|
<math>\varpi \varrho \varsigma \varphi\,\!</math> |
Blackboard Bold/Scripts | |
\mathbb{A} \mathbb{B} \mathbb{C} \mathbb{D} \mathbb{E} \mathbb{F} \mathbb{G}
|
<math>\mathbb{A} \mathbb{B} \mathbb{C} \mathbb{D} \mathbb{E} \mathbb{F} \mathbb{G} \,\!</math> |
\mathbb{H} \mathbb{I} \mathbb{J} \mathbb{K} \mathbb{L} \mathbb{M}
|
<math>\mathbb{H} \mathbb{I} \mathbb{J} \mathbb{K} \mathbb{L} \mathbb{M} \,\!</math> |
\mathbb{N} \mathbb{O} \mathbb{P} \mathbb{Q} \mathbb{R} \mathbb{S} \mathbb{T}
|
<math>\mathbb{N} \mathbb{O} \mathbb{P} \mathbb{Q} \mathbb{R} \mathbb{S} \mathbb{T} \,\!</math> |
\mathbb{U} \mathbb{V} \mathbb{W} \mathbb{X} \mathbb{Y} \mathbb{Z}
|
<math>\mathbb{U} \mathbb{V} \mathbb{W} \mathbb{X} \mathbb{Y} \mathbb{Z}\,\!</math> |
boldface (vectors) | |
\mathbf{A} \mathbf{B} \mathbf{C} \mathbf{D} \mathbf{E} \mathbf{F} \mathbf{G}
|
<math>\mathbf{A} \mathbf{B} \mathbf{C} \mathbf{D} \mathbf{E} \mathbf{F} \mathbf{G} \,\!</math> |
\mathbf{H} \mathbf{I} \mathbf{J} \mathbf{K} \mathbf{L} \mathbf{M}
|
<math>\mathbf{H} \mathbf{I} \mathbf{J} \mathbf{K} \mathbf{L} \mathbf{M} \,\!</math> |
\mathbf{N} \mathbf{O} \mathbf{P} \mathbf{Q} \mathbf{R} \mathbf{S} \mathbf{T}
|
<math>\mathbf{N} \mathbf{O} \mathbf{P} \mathbf{Q} \mathbf{R} \mathbf{S} \mathbf{T} \,\!</math> |
\mathbf{U} \mathbf{V} \mathbf{W} \mathbf{X} \mathbf{Y} \mathbf{Z}
|
<math>\mathbf{U} \mathbf{V} \mathbf{W} \mathbf{X} \mathbf{Y} \mathbf{Z} \,\!</math> |
\mathbf{a} \mathbf{b} \mathbf{c} \mathbf{d} \mathbf{e} \mathbf{f} \mathbf{g}
|
<math>\mathbf{a} \mathbf{b} \mathbf{c} \mathbf{d} \mathbf{e} \mathbf{f} \mathbf{g} \,\!</math> |
\mathbf{h} \mathbf{i} \mathbf{j} \mathbf{k} \mathbf{l} \mathbf{m}
|
<math>\mathbf{h} \mathbf{i} \mathbf{j} \mathbf{k} \mathbf{l} \mathbf{m} \,\!</math> |
\mathbf{n} \mathbf{o} \mathbf{p} \mathbf{q} \mathbf{r} \mathbf{s} \mathbf{t}
|
<math>\mathbf{n} \mathbf{o} \mathbf{p} \mathbf{q} \mathbf{r} \mathbf{s} \mathbf{t} \,\!</math> |
\mathbf{u} \mathbf{v} \mathbf{w} \mathbf{x} \mathbf{y} \mathbf{z}
|
<math>\mathbf{u} \mathbf{v} \mathbf{w} \mathbf{x} \mathbf{y} \mathbf{z} \,\!</math> |
\mathbf{0} \mathbf{1} \mathbf{2} \mathbf{3} \mathbf{4}
|
<math>\mathbf{0} \mathbf{1} \mathbf{2} \mathbf{3} \mathbf{4} \,\!</math> |
\mathbf{5} \mathbf{6} \mathbf{7} \mathbf{8} \mathbf{9}
|
<math>\mathbf{5} \mathbf{6} \mathbf{7} \mathbf{8} \mathbf{9}\,\!</math> |
Boldface (greek) | |
\boldsymbol{\Alpha} \boldsymbol{\Beta} \boldsymbol{\Gamma} \boldsymbol{\Delta} \boldsymbol{\Epsilon} \boldsymbol{\Zeta}
|
<math>\boldsymbol{\Alpha} \boldsymbol{\Beta} \boldsymbol{\Gamma} \boldsymbol{\Delta} \boldsymbol{\Epsilon} \boldsymbol{\Zeta} \,\!</math> |
\boldsymbol{\Eta} \boldsymbol{\Theta} \boldsymbol{\Iota} \boldsymbol{\Kappa} \boldsymbol{\Lambda} \boldsymbol{\Mu}
|
<math>\boldsymbol{\Eta} \boldsymbol{\Theta} \boldsymbol{\Iota} \boldsymbol{\Kappa} \boldsymbol{\Lambda} \boldsymbol{\Mu}\,\!</math> |
\boldsymbol{\Nu} \boldsymbol{\Xi} \boldsymbol{\Pi} \boldsymbol{\Rho} \boldsymbol{\Sigma} \boldsymbol{\Tau}
|
<math>\boldsymbol{\Nu} \boldsymbol{\Xi} \boldsymbol{\Pi} \boldsymbol{\Rho} \boldsymbol{\Sigma} \boldsymbol{\Tau}\,\!</math> |
\boldsymbol{\Upsilon} \boldsymbol{\Phi} \boldsymbol{\Chi} \boldsymbol{\Psi} \boldsymbol{\Omega}
|
<math>\boldsymbol{\Upsilon} \boldsymbol{\Phi} \boldsymbol{\Chi} \boldsymbol{\Psi} \boldsymbol{\Omega}\,\!</math> |
\boldsymbol{\alpha} \boldsymbol{\beta} \boldsymbol{\gamma} \boldsymbol{\delta} \boldsymbol{\epsilon} \boldsymbol{\zeta}
|
<math>\boldsymbol{\alpha} \boldsymbol{\beta} \boldsymbol{\gamma} \boldsymbol{\delta} \boldsymbol{\epsilon} \boldsymbol{\zeta}\,\!</math> |
\boldsymbol{\eta} \boldsymbol{\theta} \boldsymbol{\iota} \boldsymbol{\kappa} \boldsymbol{\lambda} \boldsymbol{\mu}
|
<math>\boldsymbol{\eta} \boldsymbol{\theta} \boldsymbol{\iota} \boldsymbol{\kappa} \boldsymbol{\lambda} \boldsymbol{\mu}\,\!</math> |
\boldsymbol{\nu} \boldsymbol{\xi} \boldsymbol{\pi} \boldsymbol{\rho} \boldsymbol{\sigma} \boldsymbol{\tau}
|
<math>\boldsymbol{\nu} \boldsymbol{\xi} \boldsymbol{\pi} \boldsymbol{\rho} \boldsymbol{\sigma} \boldsymbol{\tau}\,\!</math> |
\boldsymbol{\upsilon} \boldsymbol{\phi} \boldsymbol{\chi} \boldsymbol{\psi} \boldsymbol{\omega}
|
<math>\boldsymbol{\upsilon} \boldsymbol{\phi} \boldsymbol{\chi} \boldsymbol{\psi} \boldsymbol{\omega}\,\!</math> |
\boldsymbol{\varepsilon} \boldsymbol{\digamma} \boldsymbol{\vartheta} \boldsymbol{\varkappa}
|
<math>\boldsymbol{\varepsilon} \boldsymbol{\digamma} \boldsymbol{\vartheta} \boldsymbol{\varkappa} \,\!</math> |
\boldsymbol{\varpi} \boldsymbol{\varrho} \boldsymbol{\varsigma} \boldsymbol{\varphi}
|
<math>\boldsymbol{\varpi} \boldsymbol{\varrho} \boldsymbol{\varsigma} \boldsymbol{\varphi}\,\!</math> |
Italics | |
\mathit{A} \mathit{B} \mathit{C} \mathit{D} \mathit{E} \mathit{F} \mathit{G}
|
<math>\mathit{A} \mathit{B} \mathit{C} \mathit{D} \mathit{E} \mathit{F} \mathit{G} \,\!</math> |
\mathit{H} \mathit{I} \mathit{J} \mathit{K} \mathit{L} \mathit{M}
|
<math>\mathit{H} \mathit{I} \mathit{J} \mathit{K} \mathit{L} \mathit{M} \,\!</math> |
\mathit{N} \mathit{O} \mathit{P} \mathit{Q} \mathit{R} \mathit{S} \mathit{T}
|
<math>\mathit{N} \mathit{O} \mathit{P} \mathit{Q} \mathit{R} \mathit{S} \mathit{T} \,\!</math> |
\mathit{U} \mathit{V} \mathit{W} \mathit{X} \mathit{Y} \mathit{Z}
|
<math>\mathit{U} \mathit{V} \mathit{W} \mathit{X} \mathit{Y} \mathit{Z} \,\!</math> |
\mathit{a} \mathit{b} \mathit{c} \mathit{d} \mathit{e} \mathit{f} \mathit{g}
|
<math>\mathit{a} \mathit{b} \mathit{c} \mathit{d} \mathit{e} \mathit{f} \mathit{g} \,\!</math> |
\mathit{h} \mathit{i} \mathit{j} \mathit{k} \mathit{l} \mathit{m}
|
<math>\mathit{h} \mathit{i} \mathit{j} \mathit{k} \mathit{l} \mathit{m} \,\!</math> |
\mathit{n} \mathit{o} \mathit{p} \mathit{q} \mathit{r} \mathit{s} \mathit{t}
|
<math>\mathit{n} \mathit{o} \mathit{p} \mathit{q} \mathit{r} \mathit{s} \mathit{t} \,\!</math> |
\mathit{u} \mathit{v} \mathit{w} \mathit{x} \mathit{y} \mathit{z}
|
<math>\mathit{u} \mathit{v} \mathit{w} \mathit{x} \mathit{y} \mathit{z} \,\!</math> |
\mathit{0} \mathit{1} \mathit{2} \mathit{3} \mathit{4}
|
<math>\mathit{0} \mathit{1} \mathit{2} \mathit{3} \mathit{4} \,\!</math> |
\mathit{5} \mathit{6} \mathit{7} \mathit{8} \mathit{9}
|
<math>\mathit{5} \mathit{6} \mathit{7} \mathit{8} \mathit{9}\,\!</math> |
Roman typeface | |
\mathrm{A} \mathrm{B} \mathrm{C} \mathrm{D} \mathrm{E} \mathrm{F} \mathrm{G}
|
<math>\mathrm{A} \mathrm{B} \mathrm{C} \mathrm{D} \mathrm{E} \mathrm{F} \mathrm{G} \,\!</math> |
\mathrm{H} \mathrm{I} \mathrm{J} \mathrm{K} \mathrm{L} \mathrm{M}
|
<math>\mathrm{H} \mathrm{I} \mathrm{J} \mathrm{K} \mathrm{L} \mathrm{M} \,\!</math> |
\mathrm{N} \mathrm{O} \mathrm{P} \mathrm{Q} \mathrm{R} \mathrm{S} \mathrm{T}
|
<math>\mathrm{N} \mathrm{O} \mathrm{P} \mathrm{Q} \mathrm{R} \mathrm{S} \mathrm{T} \,\!</math> |
\mathrm{U} \mathrm{V} \mathrm{W} \mathrm{X} \mathrm{Y} \mathrm{Z}
|
<math>\mathrm{U} \mathrm{V} \mathrm{W} \mathrm{X} \mathrm{Y} \mathrm{Z} \,\!</math> |
\mathrm{a} \mathrm{b} \mathrm{c} \mathrm{d} \mathrm{e} \mathrm{f} \mathrm{g}
|
<math>\mathrm{a} \mathrm{b} \mathrm{c} \mathrm{d} \mathrm{e} \mathrm{f} \mathrm{g}\,\!</math> |
\mathrm{h} \mathrm{i} \mathrm{j} \mathrm{k} \mathrm{l} \mathrm{m}
|
<math>\mathrm{h} \mathrm{i} \mathrm{j} \mathrm{k} \mathrm{l} \mathrm{m} \,\!</math> |
\mathrm{n} \mathrm{o} \mathrm{p} \mathrm{q} \mathrm{r} \mathrm{s} \mathrm{t}
|
<math>\mathrm{n} \mathrm{o} \mathrm{p} \mathrm{q} \mathrm{r} \mathrm{s} \mathrm{t} \,\!</math> |
\mathrm{u} \mathrm{v} \mathrm{w} \mathrm{x} \mathrm{y} \mathrm{z}
|
<math>\mathrm{u} \mathrm{v} \mathrm{w} \mathrm{x} \mathrm{y} \mathrm{z} \,\!</math> |
\mathrm{0} \mathrm{1} \mathrm{2} \mathrm{3} \mathrm{4}
|
<math>\mathrm{0} \mathrm{1} \mathrm{2} \mathrm{3} \mathrm{4} \,\!</math> |
\mathrm{5} \mathrm{6} \mathrm{7} \mathrm{8} \mathrm{9}
|
<math>\mathrm{5} \mathrm{6} \mathrm{7} \mathrm{8} \mathrm{9}\,\!</math> |
Fraktur typeface | |
\mathfrak{A} \mathfrak{B} \mathfrak{C} \mathfrak{D} \mathfrak{E} \mathfrak{F} \mathfrak{G}
|
<math>\mathfrak{A} \mathfrak{B} \mathfrak{C} \mathfrak{D} \mathfrak{E} \mathfrak{F} \mathfrak{G} \,\!</math> |
\mathfrak{H} \mathfrak{I} \mathfrak{J} \mathfrak{K} \mathfrak{L} \mathfrak{M}
|
<math>\mathfrak{H} \mathfrak{I} \mathfrak{J} \mathfrak{K} \mathfrak{L} \mathfrak{M} \,\!</math> |
\mathfrak{N} \mathfrak{O} \mathfrak{P} \mathfrak{Q} \mathfrak{R} \mathfrak{S} \mathfrak{T}
|
<math>\mathfrak{N} \mathfrak{O} \mathfrak{P} \mathfrak{Q} \mathfrak{R} \mathfrak{S} \mathfrak{T} \,\!</math> |
\mathfrak{U} \mathfrak{V} \mathfrak{W} \mathfrak{X} \mathfrak{Y} \mathfrak{Z}
|
<math>\mathfrak{U} \mathfrak{V} \mathfrak{W} \mathfrak{X} \mathfrak{Y} \mathfrak{Z} \,\!</math> |
\mathfrak{a} \mathfrak{b} \mathfrak{c} \mathfrak{d} \mathfrak{e} \mathfrak{f} \mathfrak{g}
|
<math>\mathfrak{a} \mathfrak{b} \mathfrak{c} \mathfrak{d} \mathfrak{e} \mathfrak{f} \mathfrak{g} \,\!</math> |
\mathfrak{h} \mathfrak{i} \mathfrak{j} \mathfrak{k} \mathfrak{l} \mathfrak{m}
|
<math>\mathfrak{h} \mathfrak{i} \mathfrak{j} \mathfrak{k} \mathfrak{l} \mathfrak{m} \,\!</math> |
\mathfrak{n} \mathfrak{o} \mathfrak{p} \mathfrak{q} \mathfrak{r} \mathfrak{s} \mathfrak{t}
|
<math>\mathfrak{n} \mathfrak{o} \mathfrak{p} \mathfrak{q} \mathfrak{r} \mathfrak{s} \mathfrak{t} \,\!</math> |
\mathfrak{u} \mathfrak{v} \mathfrak{w} \mathfrak{x} \mathfrak{y} \mathfrak{z}
|
<math>\mathfrak{u} \mathfrak{v} \mathfrak{w} \mathfrak{x} \mathfrak{y} \mathfrak{z} \,\!</math> |
\mathfrak{0} \mathfrak{1} \mathfrak{2} \mathfrak{3} \mathfrak{4}
|
<math>\mathfrak{0} \mathfrak{1} \mathfrak{2} \mathfrak{3} \mathfrak{4} \,\!</math> |
\mathfrak{5} \mathfrak{6} \mathfrak{7} \mathfrak{8} \mathfrak{9}
|
<math>\mathfrak{5} \mathfrak{6} \mathfrak{7} \mathfrak{8} \mathfrak{9}\,\!</math> |
Calligraphy/Script | |
\mathcal{A} \mathcal{B} \mathcal{C} \mathcal{D} \mathcal{E} \mathcal{F} \mathcal{G}
|
<math>\mathcal{A} \mathcal{B} \mathcal{C} \mathcal{D} \mathcal{E} \mathcal{F} \mathcal{G} \,\!</math> |
\mathcal{H} \mathcal{I} \mathcal{J} \mathcal{K} \mathcal{L} \mathcal{M}
|
<math>\mathcal{H} \mathcal{I} \mathcal{J} \mathcal{K} \mathcal{L} \mathcal{M} \,\!</math> |
\mathcal{N} \mathcal{O} \mathcal{P} \mathcal{Q} \mathcal{R} \mathcal{S} \mathcal{T}
|
<math>\mathcal{N} \mathcal{O} \mathcal{P} \mathcal{Q} \mathcal{R} \mathcal{S} \mathcal{T} \,\!</math> |
\mathcal{U} \mathcal{V} \mathcal{W} \mathcal{X} \mathcal{Y} \mathcal{Z}
|
<math>\mathcal{U} \mathcal{V} \mathcal{W} \mathcal{X} \mathcal{Y} \mathcal{Z}\,\!</math> |
Hebrew | |
\aleph \beth \gimel \daleth
|
<math>\aleph \beth \gimel \daleth\,\!</math> |
Feature | Syntax | How it looks rendered | |
---|---|---|---|
non-italicised characters | \mbox{abc} | <math>\mbox{abc}</math> | <math>\mbox{abc} \,\!</math> |
mixed italics (bad) | \mbox{if} n \mbox{is even} | <math>\mbox{if} n \mbox{is even}</math> | <math>\mbox{if} n \mbox{is even} \,\!</math> |
mixed italics (good) | \mbox{if }n\mbox{ is even} | <math>\mbox{if }n\mbox{ is even}</math> | <math>\mbox{if }n\mbox{ is even} \,\!</math> |
mixed italics (more legible: ~ is a non-breaking space, while "\ " forces a space) | \mbox{if}~n\ \mbox{is even} | <math>\mbox{if}~n\ \mbox{is even}</math> | <math>\mbox{if}~n\ \mbox{is even} \,\!</math> |
Parenthesizing big expressions, brackets, bars[επεξεργασία]
Feature | Syntax | How it looks rendered |
---|---|---|
Bad | ( \frac{1}{2} ) | <math>( \frac{1}{2} )</math> |
Good | \left ( \frac{1}{2} \right ) | <math>\left ( \frac{1}{2} \right )</math> |
You can use various delimiters with \left and \right:
Feature | Syntax | How it looks rendered | |
---|---|---|---|
Parentheses | \left ( \frac{a}{b} \right ) | <math>\left ( \frac{a}{b} \right )</math> | |
Brackets | \left [ \frac{a}{b} \right ] \quad \left \lbrack \frac{a}{b} \right \rbrack | <math>\left [ \frac{a}{b} \right ] \quad \left \lbrack \frac{a}{b} \right \rbrack</math> | |
Braces | \left \{ \frac{a}{b} \right \} \quad \left \lbrace \frac{a}{b} \right \rbrace | <math>\left \{ \frac{a}{b} \right \} \quad \left \lbrace \frac{a}{b} \right \rbrace</math> | |
Angle brackets | \left \langle \frac{a}{b} \right \rangle | <math>\left \langle \frac{a}{b} \right \rangle</math> | |
Bars and double bars | \left | \frac{a}{b} \right \vert \left \Vert \frac{c}{d} \right \| | <math>\left | \frac{a}{b} \right \vert \left \Vert \frac{c}{d} \right \|</math> | |
Floor and ceiling functions: | \left \lfloor \frac{a}{b} \right \rfloor \left \lceil \frac{c}{d} \right \rceil | <math>\left \lfloor \frac{a}{b} \right \rfloor \left \lceil \frac{c}{d} \right \rceil</math> | |
Slashes and backslashes | \left / \frac{a}{b} \right \backslash | <math>\left / \frac{a}{b} \right \backslash</math> | |
Up, down and up-down arrows | \left \uparrow \frac{a}{b} \right \downarrow \quad \left \Uparrow \frac{a}{b} \right \Downarrow \quad \left \updownarrow \frac{a}{b} \right \Updownarrow | <math>\left \uparrow \frac{a}{b} \right \downarrow \quad \left \Uparrow \frac{a}{b} \right \Downarrow \quad \left \updownarrow \frac{a}{b} \right \Updownarrow</math> | |
Delimiters can be mixed, |
\left [ 0,1 \right ) |
<math>\left [ 0,1 \right )</math> |
|
Use \left. and \right. if you don't want a delimiter to appear: |
\left . \frac{A}{B} \right \} \to X | <math>\left . \frac{A}{B} \right \} \to X</math> | |
Size of the delimiters | \big( \Big( \bigg( \Bigg( ... \Bigg] \bigg] \Big] \big] |
<math>\big( \Big( \bigg( \Bigg( ... \Bigg] \bigg] \Big] \big]</math> |
|
\big\{ \Big\{ \bigg\{ \Bigg\{ ... \Bigg\rangle \bigg\rangle \Big\rangle \big\rangle |
<math>\big\{ \Big\{ \bigg\{ \Bigg\{ ... \Bigg\rangle \bigg\rangle \Big\rangle \big\rangle</math> |
||
\big\| \Big\| \bigg\| \Bigg\| ... \Bigg| \bigg| \Big| \big| | <math>\big\| \Big\| \bigg\| \Bigg\| ... \Bigg| \bigg| \Big| \big|</math> | ||
\big\lfloor \Big\lfloor \bigg\lfloor \Bigg\lfloor ... \Bigg\rceil \bigg\rceil \Big\rceil \big\rceil |
<math>\big\lfloor \Big\lfloor \bigg\lfloor \Bigg\lfloor ... \Bigg\rceil \bigg\rceil \Big\rceil \big\rceil</math> |
||
\big\uparrow \Big\uparrow \bigg\uparrow \Bigg\uparrow ... \Bigg\Downarrow \bigg\Downarrow \Big\Downarrow \big\Downarrow |
<math>\big\uparrow \Big\uparrow \bigg\uparrow \Bigg\uparrow ... \Bigg\Downarrow \bigg\Downarrow \Big\Downarrow \big\Downarrow</math> |
||
\big\updownarrow \Big\updownarrow \bigg\updownarrow \Bigg\updownarrow ... \Bigg\Updownarrow \bigg\Updownarrow \Big\Updownarrow \big\Updownarrow |
<math>\big\updownarrow \Big\updownarrow \bigg\updownarrow \Bigg\updownarrow ... \Bigg\Updownarrow \bigg\Updownarrow \Big\Updownarrow \big\Updownarrow</math> |
||
\big / \Big / \bigg / \Bigg / ... \Bigg\backslash \bigg\backslash \Big\backslash \big\backslash |
<math>\big / \Big / \bigg / \Bigg / ... \Bigg\backslash \bigg\backslash \Big\backslash \big\backslash</math> |
Spacing[επεξεργασία]
Note that TeX handles most spacing automatically, but you may sometimes want manual control.
Feature | Syntax | How it looks rendered |
---|---|---|
double quad space | a \qquad b | <math>a \qquad b</math> |
quad space | a \quad b | <math>a \quad b</math> |
text space | a\ b | <math>a\ b</math> |
text space without PNG conversion | a \mbox{ } b | <math>a \mbox{ } b</math> |
large space | a\;b | <math>a\;b</math> |
medium space | a\>b | [not supported] |
small space | a\,b | <math>a\,b</math> |
no space | ab | <math>ab\,</math> |
small negative space | a\!b | <math>a\!b</math> |
Align with normal text flow[επεξεργασία]
Due to the default css
img.tex { vertical-align: middle; }
an inline expression like <math>\int_{-N}^{N} e^x\, dx = 2 \sinh N</math> should look good.
If you need to align it otherwise, use <font style="vertical-align:-100%;"><math>...</math></font>
and play with the vertical-align
argument until you get it right; however, how it looks may depend on the browser and the browser settings.
Also note that if you rely on this workaround, if/when the rendering on the server gets fixed in future releases, as a result of this extra manual offset your formulae will suddenly be aligned incorrectly. So use it sparingly, if at all.
Forced PNG rendering[επεξεργασία]
To force the formula to render as PNG, add \,
(small space) at the end of the formula (where it is not rendered). This will force PNG if the user is in "HTML if simple" mode, but not for "HTML if possible" mode (math rendering settings in preferences).
You can also use \,\!
(small space and negative space, which cancel out) anywhere inside the math tags. This does force PNG even in "HTML if possible" mode, unlike \,
.
This could be useful to keep the rendering of formulae in a proof consistent, for example, or to fix formulae that render incorrectly in HTML (at one time, a^{2+2} rendered with an extra underscore), or to demonstrate how something is rendered when it would normally show up as HTML (as in the examples above).
For instance:
Syntax | How it looks rendered |
---|---|
a^{c+2} | <math>a^{c+2}</math> |
a^{c+2} \, | <math>a^{c+2} \,</math> |
a^{\,\!c+2} | <math>a^{\,\!c+2}</math> |
a^{b^{c+2}} | <math>a^{b^{c+2}}</math> (WRONG with option "HTML if possible or else PNG"!) |
a^{b^{c+2}} \, | <math>a^{b^{c+2}} \,</math> (WRONG with option "HTML if possible or else PNG"!) |
a^{b^{c+2}}\approx 5 | <math>a^{b^{c+2}}\approx 5</math> (due to "<math>\approx</math>" correctly displayed, no code "\,\!" needed) |
a^{b^{\,\!c+2}} | <math>a^{b^{\,\!c+2}}</math> |
\int_{-N}^{N} e^x\, dx | <math>\int_{-N}^{N} e^x\, dx</math> |
This has been tested with most of the formulae on this page, and seems to work perfectly.
You might want to include a comment in the HTML so people don't "correct" the formula by removing it:
- <!-- The \,\! is to keep the formula rendered as PNG instead of HTML. Please don't remove it.-->
Color[επεξεργασία]
Equations can use color:
{\color{Blue}x^2}+{\color{Brown}2x}-{\color{OliveGreen}1}
- <math>{\color{Blue}x^2}+{\color{Brown}2x}-{\color{OliveGreen}1}</math>
x_{1,2}=\frac{-b\pm\sqrt{\color{Red}b^2-4ac}}{2a}
- <math>x_{1,2}=\frac{-b\pm\sqrt{\color{Red}b^2-4ac}}{2a}</math>
See here for all named colours supported by LaTeX.
Examples[επεξεργασία]
Quadratic Polynomial[επεξεργασία]
<math>ax^2 + bx + c = 0</math>
<math>ax^2 + bx + c = 0</math>
Quadratic Polynomial (Force PNG Rendering)[επεξεργασία]
<math>ax^2 + bx + c = 0\,\!</math> <math>ax^2 + bx + c = 0\,\!</math>
Quadratic Formula[επεξεργασία]
<math>x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}</math> <math>x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}</math>
Tall Parentheses and Fractions[επεξεργασία]
<math>2 = \left( \frac{\left(3-x\right) \times 2}{3-x} \right)</math> <math>2 = \left( \frac{\left(3-x\right) \times 2}{3-x} \right)</math>
<math>S_{new} = S_{old} + \frac{ \left( 5-T \right) ^2} {2}</math> <math>S_{new} = S_{old} + \frac{ \left( 5-T \right) ^2} {2}</math>
Integrals[επεξεργασία]
<math>\int_a^x \int_a^s f(y)\,dy\,ds = \int_a^x f(y)(x-y)\,dy</math> <math>\int_a^x \int_a^s f(y)\,dy\,ds = \int_a^x f(y)(x-y)\,dy</math>
Summation[επεξεργασία]
<math>\sum_{m=1}^\infty\sum_{n=1}^\infty\frac{m^2\,n}{3^m\left(m\,3^n+n\,3^m\right)}</math>
<math>\sum_{m=1}^\infty\sum_{n=1}^\infty\frac{m^2\,n} {3^m\left(m\,3^n+n\,3^m\right)}</math>
Differential Equation[επεξεργασία]
<math>u + p(x)u' + q(x)u=f(x),\quad x>a</math> <math>u'' + p(x)u' + q(x)u=f(x),\quad x>a</math>
Complex numbers[επεξεργασία]
<math>|\bar{z}| = |z|, |(\bar{z})^n| = |z|^n, \arg(z^n) = n \arg(z)</math> <math>|\bar{z}| = |z|, |(\bar{z})^n| = |z|^n, \arg(z^n) = n \arg(z)</math>
Limits[επεξεργασία]
<math>\lim_{z\rightarrow z_0} f(z)=f(z_0)</math> <math>\lim_{z\rightarrow z_0} f(z)=f(z_0)</math>
Integral Equation[επεξεργασία]
<math>\phi_n(\kappa) = \frac{1}{4\pi^2\kappa^2} \int_0^\infty \frac{\sin(\kappa R)}{\kappa R} \frac{\partial}{\partial R} \left[R^2\frac{\partial D_n(R)}{\partial R}\right]\,dR</math> <math>\phi_n(\kappa) = \frac{1}{4\pi^2\kappa^2} \int_0^\infty \frac{\sin(\kappa R)}{\kappa R} \frac{\partial}{\partial R} \left[R^2\frac{\partial D_n(R)}{\partial R}\right]\,dR</math>
Example[επεξεργασία]
<math>\phi_n(\kappa) = 0.033C_n^2\kappa^{-11/3},\quad \frac{1}{L_0}\ll\kappa\ll\frac{1}{l_0}</math> <math>\phi_n(\kappa) = 0.033C_n^2\kappa^{-11/3},\quad \frac{1}{L_0}\ll\kappa\ll\frac{1}{l_0}</math>
Continuation and cases[επεξεργασία]
<math>f(x) = \begin{cases}1 & -1 \le x < 0 \\ \frac{1}{2} & x = 0 \\ 1 - x^2 & 0 < x \le 1\end{cases}</math> <math> f(x) = \begin{cases} 1 & -1 \le x < 0 \\ \frac{1}{2} & x = 0 \\ 1 - x^2 & 0 < x\le 1 \end{cases} </math>
Prefixed subscript[επεξεργασία]
<math>{}_pF_q(a_1,\dots,a_p;c_1,\dots,c_q;z) = \sum_{n=0}^\infty \frac{(a_1)_n\cdot\cdot\cdot(a_p)_n}{(c_1)_n\cdot\cdot\cdot(c_q)_n}\frac{z^n}{n!}</math> <math>{}_pF_q(a_1,\dots,a_p;c_1,\dots,c_q;z) = \sum_{n=0}^\infty \frac{(a_1)_n\cdot\cdot\cdot(a_p)_n}{(c_1)_n\cdot\cdot\cdot(c_q)_n} \frac{z^n}{n!}</math>