Διαφορά μεταξύ των αναθεωρήσεων του «Βοήθεια:Επεξεργασία»

Από PWMN
Μετάβαση στην πλοήγηση Πήδηση στην αναζήτηση
 
(4 ενδιάμεσες αναθεωρήσεις από τον ίδιο χρήστη δεν εμφανίζεται)
Γραμμή 1: Γραμμή 1:
 
Ακολουθεί μια σύντομη περιγραφη για την χρήση των βασικών tags του wiki. Αν βρείτε κάτι χρήσιμο μην το κρατάτε για τον εαυτό σας, απλά προσθέστε το!
 
Ακολουθεί μια σύντομη περιγραφη για την χρήση των βασικών tags του wiki. Αν βρείτε κάτι χρήσιμο μην το κρατάτε για τον εαυτό σας, απλά προσθέστε το!
 +
 +
==Γενικά==
 +
 +
Περιγραφή των βασικών συντακτικών κανόνων του mediawiki
 +
  
 
{| style="background-color:white; font-size:small; float: left; margin:3px 3px 3px 10px"
 
{| style="background-color:white; font-size:small; float: left; margin:3px 3px 3px 10px"
Γραμμή 79: Γραμμή 84:
 
|}
 
|}
  
 
+
==Κανόνες Σύνταξης Μαθηματικών Κειμένων==
==Μαθηματική Γραφή==
+
*[[Maths| Δες εδώ]]
<!-- Eight symbols per line seems to be optimal-->
 
{| class="wikitable"
 
! colspan="2" |<h3>Accents/Diacritics</h3>
 
|-
 
|<code>\acute{a} \grave{a} \hat{a} \tilde{a} \breve{a}</code>
 
|<math>\acute{a} \grave{a} \hat{a} \tilde{a} \breve{a}\,\!</math>
 
|-
 
|<code>\check{a} \bar{a} \ddot{a} \dot{a}</code>
 
|<math>\check{a} \bar{a} \ddot{a} \dot{a}\,\!</math>
 
|-
 
! colspan="2" |
 
 
 
<h3>Standard functions</h3>
 
|-
 
|<code>\sin a \cos b \tan c</code>
 
|<math>\sin a \cos b \tan c\,\!</math>
 
|-
 
|<code>\sec d \csc e \cot f</code>
 
|<math>\sec d \csc e \cot f\,\!</math>
 
|-
 
|<code>\arcsin h \arccos i \arctan j</code>
 
|<math>\arcsin h \arccos i \arctan j\,\!</math>
 
|-
 
|<code>\sinh k \cosh l \tanh m \coth n</code>
 
|<math>\sinh k \cosh l \tanh m \coth n\,\!</math>
 
|-
 
|<code>\operatorname{sh}o \operatorname{ch}p \operatorname{th}q</code>
 
|<math>\operatorname{sh}o \operatorname{ch}p \operatorname{th}q\,\!</math>
 
|-
 
|<code>\operatorname{argsh}r \operatorname{argch}s \operatorname{argth}t</code>
 
|<math>\operatorname{argsh}r \operatorname{argch}s \operatorname{argth}t\,\!</math>
 
|-
 
|<code>\lim u \limsup v \liminf w \min x \max y</code>
 
|<math>\lim u \limsup v \liminf w \min x \max y\,\!</math>
 
|-
 
|<code>\inf z \sup a \exp b \ln c \lg d \log e \log_{10} f \ker g</code>
 
|<math>\inf z \sup a \exp b \ln c \lg d \log e \log_{10} f \ker g\,\!</math>
 
|-
 
|<code>\deg h \gcd i \Pr j \det k \hom l \arg m \dim n</code>
 
|<math>\deg h \gcd i \Pr j \det k \hom l \arg m \dim n\,\!</math>
 
|-
 
! colspan="2" | <h3>Modular arithmetic</h3>
 
|-
 
|<code>s_k \equiv 0 \pmod{m} a \bmod b</code>
 
|<math>s_k \equiv 0 \pmod{m} a \bmod b\,\!</math>
 
|-
 
! colspan="2" | <h3>Derivatives</h3>
 
|-
 
|<code>\nabla \partial x dx \dot x \ddot y</code>
 
|<math>\nabla \partial x dx \dot x \ddot y\,\!</math>
 
|-
 
! colspan="2" | <h3>Sets</h3>
 
|-
 
|<code>\forall \exists \empty \emptyset \varnothing</code>
 
|<math>\forall \exists \empty \emptyset \varnothing\,\!</math>
 
|-
 
|<code>\in \ni \not \in \notin \subset \subseteq \subsetneq \supset \supseteq \supsetneq</code>
 
|<math>\in \ni \not \in \notin \subset \subseteq \subsetneq \supset \supseteq \supsetneq\,\!</math>
 
|-
 
|<code>\cap \bigcap \cup \bigcup \biguplus \setminus \smallsetminus</code>
 
|<math>\cap \bigcap \cup \bigcup \biguplus \setminus \smallsetminus\,\!</math>
 
|-
 
|<code>\sqsubset \sqsubseteq \sqsupset \sqsupseteq \sqcap \sqcup \bigsqcup</code>
 
|<math>\sqsubset \sqsubseteq \sqsupset \sqsupseteq \sqcap \sqcup \bigsqcup\,\!</math>
 
|-
 
! colspan="2" |
 
 
 
<h3>Operators</h3>
 
|-
 
|<code>+ \oplus \bigoplus \pm \mp - </code>
 
|<math>+ \oplus \bigoplus \pm \mp - \,\!</math>
 
|-
 
|<code>\times \otimes \bigotimes \cdot \circ \bullet \bigodot</code>
 
|<math>\times \otimes \bigotimes \cdot \circ \bullet \bigodot\,\!</math>
 
|-
 
|<code>\star * / \div \frac{1}{2}</code>
 
|<math>\star * / \div \frac{1}{2}\,\!</math>
 
|-
 
! colspan="2" |
 
 
 
<h3>Logic</h3>
 
|-
 
|<code>\land \wedge \bigwedge \bar{q} \to p</code>
 
|<math>\land \wedge \bigwedge \bar{q} \to p\,\!</math>
 
|-
 
|<code>\lor \vee \bigvee \lnot \neg q \And</code>
 
|<math>\lor \vee \bigvee \lnot \neg q \And\,\!</math>
 
|-
 
! colspan="2" |
 
 
 
<h3>Root</h3>
 
|-
 
|<code>\sqrt{2} \sqrt[n]{x}</code>
 
|<math>\sqrt{2} \sqrt[n]{x}\,\!</math>
 
|-
 
! colspan="2" | <h3>Relations</h3>
 
|-
 
|<code>\sim \approx \simeq \cong \dot=  \overset{\underset{\mathrm{def}}{}}{=}</code>
 
|<math>\sim \approx \simeq \cong \dot=  \overset{\underset{\mathrm{def}}{}}{=}\,\!</math>
 
|-
 
|<code>\le < \ll \gg \ge > \equiv \not\equiv \ne \mbox{or} \neq \propto</code>
 
|<math>\le < \ll \gg \ge > \equiv \not\equiv \ne \mbox{or} \neq \propto\,\!</math>
 
|-
 
! colspan="2" |
 
 
 
<h3>Geometric</h3>
 
|-
 
|<code><nowiki>\Diamond \Box \triangle \angle \perp \mid \nmid \| 45^\circ</nowiki></code>
 
|<math>\Diamond \, \Box \, \triangle \, \angle \perp \, \mid \; \nmid \, \| 45^\circ\,\!</math>
 
|-
 
! colspan="2" |
 
 
 
<h3>Arrows</h3>
 
|-
 
|<code>\leftarrow \gets \rightarrow \to \not\to \leftrightarrow \longleftarrow \longrightarrow</code>
 
|<math>\leftarrow \gets \rightarrow \to \not\to \leftrightarrow \longleftarrow \longrightarrow\,\!</math>
 
|-
 
|<code>\mapsto \longmapsto \hookrightarrow \hookleftarrow \nearrow \searrow \swarrow \nwarrow</code>
 
|<math>\mapsto \longmapsto \hookrightarrow \hookleftarrow \nearrow \searrow \swarrow \nwarrow\,\!</math>
 
|-
 
|<code>\uparrow \downarrow \updownarrow \rightharpoonup \rightharpoondown \leftharpoonup \leftharpoondown \upharpoonleft</code>
 
|<math>\uparrow \downarrow \updownarrow \rightharpoonup \rightharpoondown \leftharpoonup \leftharpoondown \upharpoonleft\,\!</math>
 
|-
 
|<code>\upharpoonright \downharpoonleft \downharpoonright \rightleftharpoons \Leftarrow \Rightarrow \Leftrightarrow \Longleftarrow</code>
 
|<math>\upharpoonright \downharpoonleft \downharpoonright \rightleftharpoons \Leftarrow \Rightarrow \Leftrightarrow \Longleftarrow\,\!</math>
 
|-
 
|<code>\Longrightarrow \Longleftrightarrow (or \iff) \Uparrow \Downarrow \Updownarrow \leftleftarrows \leftrightarrows \Lleftarrow \leftarrowtail \looparrowleft </code>
 
|<math>\Longrightarrow \Longleftrightarrow \Uparrow \Downarrow \Updownarrow \leftleftarrows \leftrightarrows \Lleftarrow \leftarrowtail \looparrowleft \,\!</math>
 
|-
 
|<code>\leftrightharpoons  \curvearrowleft \circlearrowleft \Lsh \upuparrows \rightrightarrows \rightleftarrows \Rrightarrow \rightarrowtail \looparrowright</code>
 
|<math>\leftrightharpoons  \curvearrowleft \circlearrowleft \Lsh \upuparrows \rightrightarrows \rightleftarrows \Rrightarrow \rightarrowtail \looparrowright\,\!</math>
 
|-
 
|<code>\curvearrowright \circlearrowright \Rsh \downdownarrows \multimap \leftrightsquigarrow \rightsquigarrow \nLeftarrow \nleftrightarrow \nRightarrow</code>
 
|<math>\curvearrowright \circlearrowright \Rsh \downdownarrows \multimap \leftrightsquigarrow \rightsquigarrow \nLeftarrow \nleftrightarrow \nRightarrow\,\!</math>
 
|-
 
|<code>\nLeftrightarrow \longleftrightarrow</code>
 
|<math>\nLeftrightarrow \longleftrightarrow\,\!</math>
 
|-
 
! colspan="2" | <h3>Special</h3>
 
|-
 
|<code>\eth \S \P \% \dagger \ddagger \ldots \cdots</code>
 
|<math>\eth \S \P \% \dagger \ddagger \ldots \cdots\,\!</math>
 
|-
 
|<code>\smile \frown \wr \triangleleft \triangleright \infty \bot \top</code>
 
|<math>\smile \frown \wr \triangleleft \triangleright \infty \bot \top\,\!</math>
 
|-
 
|<code>\vdash \vDash \Vdash \models \lVert \rVert \imath \hbar</code>
 
|<math>\vdash \vDash \Vdash \models \lVert \rVert \imath \hbar\,\!</math>
 
|-
 
|<code>\ell \mho \Finv \Re \Im \wp \complement \diamondsuit</code>
 
|<math>\ell \mho \Finv \Re \Im \wp \complement \diamondsuit\,\!</math>
 
|-
 
|<code>\heartsuit \clubsuit \spadesuit \Game \flat \natural \sharp</code>
 
|<math>\heartsuit \clubsuit \spadesuit \Game \flat \natural \sharp\,\!</math>
 
|-
 
! colspan="2" | <h3>Unsorted (new stuff)</h3>
 
|-
 
|<code> \vartriangle \triangledown \lozenge \circledS \measuredangle \nexists \Bbbk \backprime \blacktriangle \blacktriangledown</code>
 
|<math> \vartriangle \triangledown \lozenge \circledS \measuredangle \nexists \Bbbk \backprime \blacktriangle \blacktriangledown</math>
 
|-
 
|<code> \blacksquare \blacklozenge \bigstar \sphericalangle \diagup \diagdown \dotplus \Cap \Cup \barwedge</code>
 
|<math> \blacksquare \blacklozenge \bigstar \sphericalangle \diagup \diagdown \dotplus \Cap \Cup \barwedge</math>
 
|-
 
|<code> \veebar \doublebarwedge \boxminus \boxtimes \boxdot \boxplus \divideontimes \ltimes \rtimes \leftthreetimes</code>
 
|<math> \veebar \doublebarwedge \boxminus \boxtimes \boxdot \boxplus \divideontimes \ltimes \rtimes \leftthreetimes</math>
 
|-
 
|<code> \rightthreetimes \curlywedge \curlyvee \circleddash \circledast \circledcirc \centerdot \intercal \leqq \leqslant</code>
 
|<math> \rightthreetimes \curlywedge \curlyvee \circleddash \circledast \circledcirc \centerdot \intercal \leqq \leqslant</math>
 
|-
 
|<code> \eqslantless \lessapprox \approxeq \lessdot \lll \lessgtr \lesseqgtr \lesseqqgtr \doteqdot \risingdotseq</code>
 
|<math> \eqslantless \lessapprox \approxeq \lessdot \lll \lessgtr \lesseqgtr \lesseqqgtr \doteqdot \risingdotseq</math>
 
|-
 
|<code> \fallingdotseq \backsim \backsimeq \subseteqq \Subset \preccurlyeq \curlyeqprec \precsim \precapprox \vartriangleleft</code>
 
|<math> \fallingdotseq \backsim \backsimeq \subseteqq \Subset \preccurlyeq \curlyeqprec \precsim \precapprox \vartriangleleft</math>
 
|-
 
|<code> \Vvdash \bumpeq \Bumpeq \geqq \geqslant \eqslantgtr \gtrsim \gtrapprox \eqsim \gtrdot</code>
 
|<math> \Vvdash \bumpeq \Bumpeq \geqq \geqslant \eqslantgtr \gtrsim \gtrapprox \eqsim \gtrdot</math>
 
|-
 
|<code> \ggg \gtrless \gtreqless \gtreqqless \eqcirc \circeq \triangleq \thicksim \thickapprox \supseteqq</code>
 
|<math> \ggg \gtrless \gtreqless \gtreqqless \eqcirc \circeq \triangleq \thicksim \thickapprox \supseteqq</math>
 
|-
 
|<code> \Supset \succcurlyeq \curlyeqsucc \succsim \succapprox \vartriangleright \shortmid \shortparallel \between \pitchfork</code>
 
|<math> \Supset \succcurlyeq \curlyeqsucc \succsim \succapprox \vartriangleright \shortmid \shortparallel \between \pitchfork</math>
 
|-
 
|<code> \varpropto \blacktriangleleft \therefore \backepsilon \blacktriangleright \because \nleqslant \nleqq \lneq \lneqq</code>
 
|<math> \varpropto \blacktriangleleft \therefore \backepsilon \blacktriangleright \because \nleqslant \nleqq \lneq \lneqq</math>
 
|-
 
|<code> \lvertneqq \lnsim \lnapprox \nprec \npreceq \precneqq \precnsim \precnapprox \nsim \nshortmid</code>
 
|<math> \lvertneqq \lnsim \lnapprox \nprec \npreceq \precneqq \precnsim \precnapprox \nsim \nshortmid</math>
 
|-
 
|<code> \nvdash \nVdash \ntriangleleft \ntrianglelefteq \nsubseteq \nsubseteqq \varsubsetneq \subsetneqq \varsubsetneqq \ngtr</code>
 
|<math> \nvdash \nVdash \ntriangleleft \ntrianglelefteq \nsubseteq \nsubseteqq \varsubsetneq \subsetneqq \varsubsetneqq \ngtr</math>
 
|-
 
|<code> \ngeqslant \ngeqq \gneq \gneqq \gvertneqq \gnsim \gnapprox \nsucc \nsucceq \succneqq</code>
 
|<math> \ngeqslant \ngeqq \gneq \gneqq \gvertneqq \gnsim \gnapprox \nsucc \nsucceq \succneqq</math>
 
|-
 
|<code> \succnsim \succnapprox \ncong \nshortparallel \nparallel \nvDash \nVDash \ntriangleright \ntrianglerighteq \nsupseteq</code>
 
|<math> \succnsim \succnapprox \ncong \nshortparallel \nparallel \nvDash \nVDash \ntriangleright \ntrianglerighteq \nsupseteq</math>
 
|-
 
|<code> \nsupseteqq \varsupsetneq \supsetneqq \varsupsetneqq</code>
 
|<math> \nsupseteqq \varsupsetneq \supsetneqq \varsupsetneqq</math>
 
|-
 
|<code>\jmath \surd \ast \uplus \diamond \bigtriangleup \bigtriangledown \ominus</code>
 
|<math>\jmath \surd \ast \uplus \diamond \bigtriangleup \bigtriangledown \ominus\,\!</math>
 
|-
 
|<code>\oslash \odot \bigcirc \amalg \prec \succ \preceq \succeq</code>
 
|<math>\oslash \odot \bigcirc \amalg \prec \succ \preceq \succeq\,\!</math>
 
|-
 
|<code>\dashv \asymp \doteq \parallel</code>
 
|<math>\dashv \asymp \doteq \parallel\,\!</math>
 
|}
 
 
 
== Subscripts, superscripts, integrals ==
 
{| border="2" cellpadding="4" cellspacing="0" style="margin: 1em 1em 1em 0; background: #f9f9f9; border: 1px #aaa solid; border-collapse: collapse;"
 
!rowspan="2"|Feature!!rowspan="2"|Syntax!!colspan="2"|How it looks rendered
 
|-
 
!HTML!!PNG
 
|-
 
|-
 
|Superscript||<code>a^2</code>||<math>a^2</math>||<math>a^2 \,\!</math>
 
|-
 
|Subscript||<code>a_2</code>||<math>a_2</math>||<math>a_2 \,\!</math>
 
|-
 
|rowspan=2|Grouping||<code>a^{2+2}</code>||<math>a^{2+2}</math>||<math>a^{2+2}\,\!</math>
 
|-
 
|<code>a_{i,j}</code>||<math>a_{i,j}</math>||<math>a_{i,j}\,\!</math>
 
|-
 
|Combining sub & super||<code>x_2^3</code>||colspan=2|<math>x_2^3</math>
 
|-
 
|rowspan="2"|Preceding and/or Additional sub & super||<code>\sideset{_1^2}{_3^4}\prod_a^b</code>||colspan=2|<math>\sideset{_1^2}{_3^4}\prod_a^b</math>
 
|-
 
|<code>{}_1^2\!\Omega_3^4</code>||colspan=2|<math>{}_1^2\!\Omega_3^4</math>
 
|-
 
|rowspan="4"|Stacking
 
|<code>\overset{\alpha}{\omega}</code>||colspan="2"|<math>\overset{\alpha}{\omega}</math>
 
|-
 
|<code>\underset{\alpha}{\omega}</code>||colspan="2"|<math>\underset{\alpha}{\omega}</math>
 
|-
 
|<code>\overset{\alpha}{\underset{\gamma}{\omega}}</code>||colspan="2"|<math>\overset{\alpha}{\underset{\gamma}{\omega}}</math>
 
|-
 
|<code>\stackrel{\alpha}{\omega}</code>||colspan="2"|<math>\stackrel{\alpha}{\omega}</math>
 
|-
 
|Derivative (forced PNG)||<code>x', <nowiki>y''</nowiki>, f', <nowiki>f''</nowiki>\!</code>||&nbsp;||<math>x', y'', f', f''\!</math>
 
|-
 
|Derivative (f in italics may overlap primes in HTML)||<code>x', <nowiki>y''</nowiki>, f', <nowiki>f''</nowiki></code>||<math>x', y'', f', f''</math>||<math>x', y'', f', f''\!</math>
 
|-
 
|Derivative (wrong in HTML)||<code>x^\prime, y^{\prime\prime}</code>||<math>x^\prime, y^{\prime\prime}</math>||<math>x^\prime, y^{\prime\prime}\,\!</math>
 
|-
 
|Derivative (wrong in PNG)||<code>x\prime, y\prime\prime</code>||<math>x\prime, y\prime\prime</math>||<math>x\prime, y\prime\prime\,\!</math>
 
|-
 
|Derivative dots||<code>\dot{x}, \ddot{x}</code>||colspan=2|<math>\dot{x}, \ddot{x}</math>
 
|-
 
|rowspan="3"|Underlines, overlines, vectors||<code>\hat a \ \bar b \ \vec c</code>||colspan=2|<math>\hat a \ \bar b \ \vec c</math>
 
|-
 
|<code>\overrightarrow{a b} \ \overleftarrow{c d} \ \widehat{d e f}</code>||colspan=2|<math>\overrightarrow{a b} \ \overleftarrow{c d} \ \widehat{d e f}</math>
 
|-
 
|<code>\overline{g h i} \ \underline{j k l}</code>||colspan=2|<math>\overline{g h i} \ \underline{j k l}</math>
 
|-
 
|Arrows||<code> A \xleftarrow{n+\mu-1} B \xrightarrow[T]{n\pm i-1} C</code>||colspan=2|<math> A \xleftarrow{n+\mu-1} B \xrightarrow[T]{n\pm i-1} C</math>
 
|-
 
|Overbraces||<code>\overbrace{ 1+2+\cdots+100 }^{5050}</code>||colspan=2|<math>\overbrace{ 1+2+\cdots+100 }^{5050}</math>
 
|-
 
|Underbraces||<code>\underbrace{ a+b+\cdots+z }_{26}</code>||colspan=2|<math>\underbrace{ a+b+\cdots+z }_{26}</math>
 
|-
 
|Sum||<code>\sum_{k=1}^N k^2</code>||colspan=2|<math>\sum_{k=1}^N k^2</math>
 
|-
 
|Sum (force&nbsp;<code>\textstyle</code>)||<code>\textstyle \sum_{k=1}^N k^2 </code>||colspan=2|<math>\textstyle \sum_{k=1}^N k^2</math>
 
|-
 
|Product||<code>\prod_{i=1}^N x_i</code>||colspan=2|<math>\prod_{i=1}^N x_i</math>
 
|-
 
|Product (force&nbsp;<code>\textstyle</code>)||<code>\textstyle \prod_{i=1}^N x_i</code>||colspan=2|<math>\textstyle \prod_{i=1}^N x_i</math>
 
|-
 
|Coproduct||<code>\coprod_{i=1}^N x_i</code>||colspan=2|<math>\coprod_{i=1}^N x_i</math>
 
|-
 
|Coproduct (force&nbsp;<code>\textstyle</code>)||<code>\textstyle \coprod_{i=1}^N x_i</code>||colspan=2|<math>\textstyle \coprod_{i=1}^N x_i</math>
 
|-
 
|Limit||<code>\lim_{n \to \infty}x_n</code>||colspan=2|<math>\lim_{n \to \infty}x_n</math>
 
|-
 
|Limit (force&nbsp;<code>\textstyle</code>)||<code>\textstyle \lim_{n \to \infty}x_n</code>||colspan=2|<math>\textstyle \lim_{n \to \infty}x_n</math>
 
|-
 
|Integral||<code>\int_{-N}^{N} e^x\, dx</code>||colspan=2|<math>\int_{-N}^{N} e^x\, dx</math>
 
|-
 
|Integral (force&nbsp;<code>\textstyle</code>)||<code>\textstyle \int_{-N}^{N} e^x\, dx</code>||colspan=2|<math>\textstyle \int_{-N}^{N} e^x\, dx</math>
 
|-
 
|Double integral||<code>\iint_{D}^{W} \, dx\,dy</code>||colspan=2|<math>\iint_{D}^{W} \, dx\,dy</math>
 
|-
 
|Triple integral||<code>\iiint_{E}^{V} \, dx\,dy\,dz</code>||colspan=2|<math>\iiint_{E}^{V} \, dx\,dy\,dz</math>
 
|-
 
|Quadruple integral||<code>\iiiint_{F}^{U} \, dx\,dy\,dz\,dt</code>||colspan=2|<math>\iiiint_{F}^{U} \, dx\,dy\,dz\,dt</math>
 
|-
 
|Path integral||<code>\oint_{C} x^3\, dx + 4y^2\, dy</code>||colspan=2|<math>\oint_{C} x^3\, dx + 4y^2\, dy</math>
 
|-
 
|Intersections||<code>\bigcap_1^{n} p</code>||colspan=2|<math>\bigcap_1^{n} p</math>
 
|-
 
|Unions||<code>\bigcup_1^{k} p</code>||colspan=2|<math>\bigcup_1^{k} p</math>
 
|}
 
 
 
== Fractions, matrices, multilines ==
 
<table class="wikitable">
 
 
 
<tr>
 
<th>Feature</th>
 
<th>Syntax</th>
 
<th>How it looks rendered</th>
 
</tr>
 
 
 
<tr>
 
<td>Fractions</td>
 
<td><code>\frac{2}{4}=0.5</code></td>
 
<td><math>\frac{2}{4}=0.5</math></td>
 
</tr>
 
 
 
<tr>
 
<td>Small Fractions</td>
 
<td><code>\tfrac{2}{4} = 0.5</code></td>
 
<td><math>\tfrac{2}{4} = 0.5</math></td>
 
</tr>
 
 
 
<tr>
 
<td>Large (normal) Fractions</td>
 
<td><code>\dfrac{2}{4} = 0.5</code></td>
 
<td><math>\dfrac{2}{4} = 0.5</math></td>
 
</tr>
 
 
 
<tr>
 
<td>Large (nestled) Fractions</td>
 
<td><code>\cfrac{2}{c + \cfrac{2}{d + \cfrac{2}{4}}} = a</code></td>
 
<td><math>\cfrac{2}{c + \cfrac{2}{d + \cfrac{2}{4}}} = a</math></td>
 
</tr>
 
 
 
<tr>
 
<td>Binomial coefficients</td>
 
<td><code>\binom{n}{k}</code></td>
 
<td><math>\binom{n}{k}</math></td>
 
</tr>
 
 
 
 
 
<tr>
 
<td>Small Binomial coefficients</td>
 
<td><code>\tbinom{n}{k}</code></td>
 
<td><math>\tbinom{n}{k}</math></td>
 
</tr>
 
 
 
 
 
<tr>
 
<td>Large (normal) Binomial coefficients</td>
 
<td><code>\dbinom{n}{k}</code></td>
 
<td><math>\dbinom{n}{k}</math></td>
 
</tr>
 
 
 
<tr>
 
<td rowspan="7">Matrices</td>
 
<td><pre>\begin{matrix}
 
  x & y \\
 
  z & v
 
\end{matrix}</pre></td>
 
<td><math>\begin{matrix} x & y \\ z & v
 
\end{matrix}</math></td>
 
</tr>
 
 
 
<tr>
 
<td><pre>\begin{vmatrix}
 
  x & y \\
 
  z & v
 
\end{vmatrix}</pre></td>
 
<td><math>\begin{vmatrix} x & y \\ z & v
 
\end{vmatrix}</math></td>
 
</tr>
 
 
 
<tr>
 
<td><pre>\begin{Vmatrix}
 
  x & y \\
 
  z & v
 
\end{Vmatrix}</pre></td>
 
<td><math>\begin{Vmatrix} x & y \\ z & v
 
\end{Vmatrix}</math></td>
 
</tr>
 
 
 
<tr>
 
<td><pre>\begin{bmatrix}
 
  0      & \cdots & 0      \\
 
  \vdots & \ddots & \vdots \\
 
  0      & \cdots & 0
 
\end{bmatrix}</pre></td>
 
<td><math>\begin{bmatrix} 0 & \cdots & 0 \\ \vdots
 
& \ddots & \vdots \\ 0 & \cdots &
 
0\end{bmatrix} </math></td>
 
</tr>
 
 
 
<tr>
 
<td><pre>\begin{Bmatrix}
 
  x & y \\
 
  z & v
 
\end{Bmatrix}</pre></td>
 
<td><math>\begin{Bmatrix} x & y \\ z & v
 
\end{Bmatrix}</math></td>
 
</tr>
 
 
 
<tr>
 
<td><pre>\begin{pmatrix}
 
  x & y \\
 
  z & v
 
\end{pmatrix}</pre></td>
 
<td><math>\begin{pmatrix} x & y \\ z & v
 
\end{pmatrix}</math></td>
 
</tr>
 
 
 
<tr>
 
<td><pre>
 
\bigl( \begin{smallmatrix}
 
  a&b\\ c&d
 
\end{smallmatrix} \bigr)
 
</pre></td>
 
<td><math>
 
\bigl( \begin{smallmatrix}
 
  a&b\\ c&d
 
\end{smallmatrix} \bigr)
 
</math></td>
 
</tr>
 
 
 
 
 
 
 
<tr>
 
<td>Case distinctions</td>
 
<td><pre>
 
f(n) =
 
\begin{cases}
 
  n/2,  & \mbox{if }n\mbox{ is even} \\
 
  3n+1, & \mbox{if }n\mbox{ is odd}
 
\end{cases}</pre></td>
 
<td><math>f(n) =
 
\begin{cases}
 
  n/2,  & \mbox{if }n\mbox{ is even} \\
 
  3n+1, & \mbox{if }n\mbox{ is odd}
 
\end{cases} </math></td>
 
</tr>
 
 
 
<tr>
 
<td rowspan="2">Multiline equations</td>
 
<td><pre>
 
\begin{align}
 
f(x) & = (a+b)^2 \\
 
      & = a^2+2ab+b^2 \\
 
\end{align}
 
</pre></td>
 
<td><math>
 
\begin{align}
 
f(x) & = (a+b)^2 \\
 
      & = a^2+2ab+b^2 \\
 
\end{align}
 
</math></td>
 
</tr>
 
 
 
<tr>
 
<td><pre>
 
\begin{alignat}{2}
 
f(x) & = (a-b)^2 \\
 
      & = a^2-2ab+b^2 \\
 
\end{alignat}
 
</pre></td>
 
<td><math>
 
\begin{alignat}{2}
 
f(x) & = (a-b)^2 \\
 
      & = a^2-2ab+b^2 \\
 
\end{alignat}
 
</math></td>
 
</tr>
 
<tr>
 
<td>Multiline equations <small>(must define number of colums used ({lcr}) <small>(should not be used unless needed)</small></small></td>
 
<td><pre>
 
\begin{array}{lcl}
 
  z        & = & a \\
 
  f(x,y,z) & = & x + y + z 
 
\end{array}</pre></td>
 
<td><math>\begin{array}{lcl}
 
  z        & = & a \\
 
  f(x,y,z) & = & x + y + z 
 
\end{array}</math></td>
 
</tr>
 
 
 
<tr>
 
<td>Multiline equations (more)</td>
 
<td><pre>
 
\begin{array}{lcr}
 
  z        & = & a \\
 
  f(x,y,z) & = & x + y + z   
 
\end{array}</pre></td>
 
<td><math>\begin{array}{lcr}
 
  z        & = & a \\
 
  f(x,y,z) & = & x + y + z   
 
\end{array}</math></td>
 
</tr>
 
 
 
<tr>
 
<td>Breaking up a long expression so that it wraps when necessary</td>
 
<td><pre>
 
<nowiki>
 
<math>f(x) \,\!</math>
 
<math>= \sum_{n=0}^\infty a_n x^n </math>
 
<math>= a_0+a_1x+a_2x^2+\cdots</math>
 
</nowiki>
 
</pre>
 
</td>
 
<td>
 
<math>f(x) \,\!</math><math>= \sum_{n=0}^\infty a_n x^n </math><math>= a_0 +a_1x+a_2x^2+\cdots</math>
 
</td>
 
</tr>
 
 
 
<tr>
 
<td>Simultaneous equations</td>
 
<td><pre>\begin{cases}
 
    3x + 5y +  z \\
 
    7x - 2y + 4z \\
 
  -6x + 3y + 2z
 
\end{cases}</pre></td>
 
<td><math>\begin{cases} 3x + 5y + z \\ 7x - 2y + 4z \\ -6x + 3y + 2z \end{cases}</math></td>
 
</tr>
 
 
 
</table>
 
 
 
== Alphabets and typefaces ==
 
 
 
{| class="wikitable"
 
! colspan="2" | Greek alphabet
 
|-
 
|<code><nowiki>\Alpha \Beta \Gamma \Delta \Epsilon \Zeta</nowiki></code>
 
|<math>\Alpha \Beta \Gamma \Delta \Epsilon \Zeta \,\!</math>
 
|-
 
|<code><nowiki>\Eta \Theta \Iota \Kappa \Lambda \Mu</nowiki></code>
 
|<math>\Eta \Theta \Iota \Kappa \Lambda \Mu \,\!</math>
 
|-
 
|<code><nowiki>\Nu \Xi \Pi \Rho \Sigma \Tau</nowiki></code>
 
|<math>\Nu \Xi \Pi \Rho \Sigma \Tau\,\!</math>
 
|-
 
|<code><nowiki>\Upsilon \Phi \Chi \Psi \Omega</nowiki></code>
 
|<math>\Upsilon \Phi \Chi \Psi \Omega \,\!</math>
 
|-
 
|<code><nowiki>\alpha \beta \gamma \delta \epsilon \zeta</nowiki></code>
 
|<math>\alpha \beta \gamma \delta \epsilon \zeta \,\!</math>
 
|-
 
|<code><nowiki>\eta \theta \iota \kappa \lambda \mu</nowiki></code>
 
|<math>\eta \theta \iota \kappa \lambda \mu \,\!</math>
 
|-
 
|<code><nowiki>\nu \xi \pi \rho \sigma \tau</nowiki></code>
 
|<math>\nu \xi \pi \rho \sigma \tau \,\!</math>
 
|-
 
|<code><nowiki>\upsilon \phi \chi \psi \omega</nowiki></code>
 
|<math>\upsilon \phi \chi \psi \omega \,\!</math>
 
|-
 
|<code><nowiki>\varepsilon \digamma \vartheta \varkappa</nowiki></code>
 
|<math>\varepsilon \digamma \vartheta \varkappa \,\!</math>
 
|-
 
|<code><nowiki>\varpi \varrho \varsigma \varphi</nowiki></code>
 
|<math>\varpi \varrho \varsigma \varphi\,\!</math>
 
|-
 
! colspan="2" | Blackboard Bold/Scripts
 
|-
 
|<code><nowiki>\mathbb{A} \mathbb{B} \mathbb{C} \mathbb{D} \mathbb{E} \mathbb{F} \mathbb{G}</nowiki></code>
 
|<math>\mathbb{A} \mathbb{B} \mathbb{C} \mathbb{D} \mathbb{E} \mathbb{F} \mathbb{G} \,\!</math>
 
|-
 
|<code><nowiki>\mathbb{H} \mathbb{I} \mathbb{J} \mathbb{K} \mathbb{L} \mathbb{M}</nowiki></code>
 
|<math>\mathbb{H} \mathbb{I} \mathbb{J} \mathbb{K} \mathbb{L} \mathbb{M} \,\!</math>
 
|-
 
|<code><nowiki>\mathbb{N} \mathbb{O} \mathbb{P} \mathbb{Q} \mathbb{R} \mathbb{S} \mathbb{T}</nowiki></code>
 
|<math>\mathbb{N} \mathbb{O} \mathbb{P} \mathbb{Q} \mathbb{R} \mathbb{S} \mathbb{T} \,\!</math>
 
|-
 
|<code><nowiki>\mathbb{U} \mathbb{V} \mathbb{W} \mathbb{X} \mathbb{Y} \mathbb{Z}</nowiki></code>
 
|<math>\mathbb{U} \mathbb{V} \mathbb{W} \mathbb{X} \mathbb{Y} \mathbb{Z}\,\!</math>
 
|-
 
! colspan="2" | boldface (vectors)
 
|-
 
|<code><nowiki>\mathbf{A} \mathbf{B} \mathbf{C} \mathbf{D} \mathbf{E} \mathbf{F} \mathbf{G}</nowiki></code>
 
|<math>\mathbf{A} \mathbf{B} \mathbf{C} \mathbf{D} \mathbf{E} \mathbf{F} \mathbf{G} \,\!</math>
 
|-
 
|<code><nowiki>\mathbf{H} \mathbf{I} \mathbf{J} \mathbf{K} \mathbf{L} \mathbf{M}</nowiki></code>
 
|<math>\mathbf{H} \mathbf{I} \mathbf{J} \mathbf{K} \mathbf{L} \mathbf{M} \,\!</math>
 
|-
 
|<code><nowiki>\mathbf{N} \mathbf{O} \mathbf{P} \mathbf{Q} \mathbf{R} \mathbf{S} \mathbf{T}</nowiki></code>
 
|<math>\mathbf{N} \mathbf{O} \mathbf{P} \mathbf{Q} \mathbf{R} \mathbf{S} \mathbf{T} \,\!</math>
 
|-
 
|<code><nowiki>\mathbf{U} \mathbf{V} \mathbf{W} \mathbf{X} \mathbf{Y} \mathbf{Z}</nowiki></code>
 
|<math>\mathbf{U} \mathbf{V} \mathbf{W} \mathbf{X} \mathbf{Y} \mathbf{Z} \,\!</math>
 
|-
 
|<code><nowiki>\mathbf{a} \mathbf{b} \mathbf{c} \mathbf{d} \mathbf{e} \mathbf{f} \mathbf{g}</nowiki></code>
 
|<math>\mathbf{a} \mathbf{b} \mathbf{c} \mathbf{d} \mathbf{e} \mathbf{f} \mathbf{g} \,\!</math>
 
|-
 
|<code><nowiki>\mathbf{h} \mathbf{i} \mathbf{j} \mathbf{k} \mathbf{l} \mathbf{m}</nowiki></code>
 
|<math>\mathbf{h} \mathbf{i} \mathbf{j} \mathbf{k} \mathbf{l} \mathbf{m} \,\!</math>
 
|-
 
|<code><nowiki>\mathbf{n} \mathbf{o} \mathbf{p} \mathbf{q} \mathbf{r} \mathbf{s} \mathbf{t}</nowiki></code>
 
|<math>\mathbf{n} \mathbf{o} \mathbf{p} \mathbf{q} \mathbf{r} \mathbf{s} \mathbf{t} \,\!</math>
 
|-
 
|<code><nowiki>\mathbf{u} \mathbf{v} \mathbf{w} \mathbf{x} \mathbf{y} \mathbf{z}</nowiki></code>
 
|<math>\mathbf{u} \mathbf{v} \mathbf{w} \mathbf{x} \mathbf{y} \mathbf{z} \,\!</math>
 
|-
 
|<code><nowiki>\mathbf{0} \mathbf{1} \mathbf{2} \mathbf{3} \mathbf{4}</nowiki></code>
 
|<math>\mathbf{0} \mathbf{1} \mathbf{2} \mathbf{3} \mathbf{4} \,\!</math>
 
|-
 
|<code><nowiki>\mathbf{5} \mathbf{6} \mathbf{7} \mathbf{8} \mathbf{9}</nowiki></code>
 
|<math>\mathbf{5} \mathbf{6} \mathbf{7} \mathbf{8} \mathbf{9}\,\!</math>
 
|-
 
! colspan="2" | Boldface (greek)
 
|-
 
|<code><nowiki>\boldsymbol{\Alpha} \boldsymbol{\Beta} \boldsymbol{\Gamma} \boldsymbol{\Delta} \boldsymbol{\Epsilon} \boldsymbol{\Zeta}</nowiki></code>
 
|<math>\boldsymbol{\Alpha} \boldsymbol{\Beta} \boldsymbol{\Gamma} \boldsymbol{\Delta} \boldsymbol{\Epsilon} \boldsymbol{\Zeta} \,\!</math>
 
|-
 
|<code><nowiki>\boldsymbol{\Eta} \boldsymbol{\Theta} \boldsymbol{\Iota} \boldsymbol{\Kappa} \boldsymbol{\Lambda} \boldsymbol{\Mu}</nowiki></code>
 
|<math>\boldsymbol{\Eta} \boldsymbol{\Theta} \boldsymbol{\Iota} \boldsymbol{\Kappa} \boldsymbol{\Lambda} \boldsymbol{\Mu}\,\!</math>
 
|-
 
|<code><nowiki>\boldsymbol{\Nu} \boldsymbol{\Xi} \boldsymbol{\Pi} \boldsymbol{\Rho} \boldsymbol{\Sigma} \boldsymbol{\Tau}</nowiki></code>
 
|<math>\boldsymbol{\Nu} \boldsymbol{\Xi} \boldsymbol{\Pi} \boldsymbol{\Rho} \boldsymbol{\Sigma} \boldsymbol{\Tau}\,\!</math>
 
|-
 
|<code><nowiki>\boldsymbol{\Upsilon} \boldsymbol{\Phi} \boldsymbol{\Chi} \boldsymbol{\Psi} \boldsymbol{\Omega}</nowiki></code>
 
|<math>\boldsymbol{\Upsilon} \boldsymbol{\Phi} \boldsymbol{\Chi} \boldsymbol{\Psi} \boldsymbol{\Omega}\,\!</math>
 
|-
 
|<code><nowiki>\boldsymbol{\alpha} \boldsymbol{\beta} \boldsymbol{\gamma} \boldsymbol{\delta} \boldsymbol{\epsilon} \boldsymbol{\zeta}</nowiki></code>
 
|<math>\boldsymbol{\alpha} \boldsymbol{\beta} \boldsymbol{\gamma} \boldsymbol{\delta} \boldsymbol{\epsilon} \boldsymbol{\zeta}\,\!</math>
 
|-
 
|<code><nowiki>\boldsymbol{\eta} \boldsymbol{\theta} \boldsymbol{\iota} \boldsymbol{\kappa} \boldsymbol{\lambda} \boldsymbol{\mu}</nowiki></code>
 
|<math>\boldsymbol{\eta} \boldsymbol{\theta} \boldsymbol{\iota} \boldsymbol{\kappa} \boldsymbol{\lambda} \boldsymbol{\mu}\,\!</math>
 
|-
 
|<code><nowiki>\boldsymbol{\nu} \boldsymbol{\xi} \boldsymbol{\pi} \boldsymbol{\rho} \boldsymbol{\sigma} \boldsymbol{\tau}</nowiki></code>
 
|<math>\boldsymbol{\nu} \boldsymbol{\xi} \boldsymbol{\pi} \boldsymbol{\rho} \boldsymbol{\sigma} \boldsymbol{\tau}\,\!</math>
 
|-
 
|<code><nowiki>\boldsymbol{\upsilon} \boldsymbol{\phi} \boldsymbol{\chi} \boldsymbol{\psi} \boldsymbol{\omega}</nowiki></code>
 
|<math>\boldsymbol{\upsilon} \boldsymbol{\phi} \boldsymbol{\chi} \boldsymbol{\psi} \boldsymbol{\omega}\,\!</math>
 
|-
 
|<code><nowiki>\boldsymbol{\varepsilon} \boldsymbol{\digamma} \boldsymbol{\vartheta} \boldsymbol{\varkappa}</nowiki></code>
 
|<math>\boldsymbol{\varepsilon} \boldsymbol{\digamma} \boldsymbol{\vartheta} \boldsymbol{\varkappa} \,\!</math>
 
|-
 
|<code><nowiki>\boldsymbol{\varpi} \boldsymbol{\varrho} \boldsymbol{\varsigma} \boldsymbol{\varphi}</nowiki></code>
 
|<math>\boldsymbol{\varpi} \boldsymbol{\varrho} \boldsymbol{\varsigma} \boldsymbol{\varphi}\,\!</math>
 
|-
 
! colspan="2" | Italics
 
|-
 
|<code><nowiki>\mathit{A} \mathit{B} \mathit{C} \mathit{D} \mathit{E} \mathit{F} \mathit{G}</nowiki></code>
 
|<math>\mathit{A} \mathit{B} \mathit{C} \mathit{D} \mathit{E} \mathit{F} \mathit{G} \,\!</math>
 
|-
 
|<code><nowiki>\mathit{H} \mathit{I} \mathit{J} \mathit{K} \mathit{L} \mathit{M}</nowiki></code>
 
|<math>\mathit{H} \mathit{I} \mathit{J} \mathit{K} \mathit{L} \mathit{M} \,\!</math>
 
|-
 
|<code><nowiki>\mathit{N} \mathit{O} \mathit{P} \mathit{Q} \mathit{R} \mathit{S} \mathit{T}</nowiki></code>
 
|<math>\mathit{N} \mathit{O} \mathit{P} \mathit{Q} \mathit{R} \mathit{S} \mathit{T} \,\!</math>
 
|-
 
|<code><nowiki>\mathit{U} \mathit{V} \mathit{W} \mathit{X} \mathit{Y} \mathit{Z}</nowiki></code>
 
|<math>\mathit{U} \mathit{V} \mathit{W} \mathit{X} \mathit{Y} \mathit{Z} \,\!</math>
 
|-
 
|<code><nowiki>\mathit{a} \mathit{b} \mathit{c} \mathit{d} \mathit{e} \mathit{f} \mathit{g}</nowiki></code>
 
|<math>\mathit{a} \mathit{b} \mathit{c} \mathit{d} \mathit{e} \mathit{f} \mathit{g} \,\!</math>
 
|-
 
|<code><nowiki>\mathit{h} \mathit{i} \mathit{j} \mathit{k} \mathit{l} \mathit{m}</nowiki></code>
 
|<math>\mathit{h} \mathit{i} \mathit{j} \mathit{k} \mathit{l} \mathit{m} \,\!</math>
 
|-
 
|<code><nowiki>\mathit{n} \mathit{o} \mathit{p} \mathit{q} \mathit{r} \mathit{s} \mathit{t}</nowiki></code>
 
|<math>\mathit{n} \mathit{o} \mathit{p} \mathit{q} \mathit{r} \mathit{s} \mathit{t} \,\!</math>
 
|-
 
|<code><nowiki>\mathit{u} \mathit{v} \mathit{w} \mathit{x} \mathit{y} \mathit{z}</nowiki></code>
 
|<math>\mathit{u} \mathit{v} \mathit{w} \mathit{x} \mathit{y} \mathit{z} \,\!</math>
 
|-
 
|<code><nowiki>\mathit{0} \mathit{1} \mathit{2} \mathit{3} \mathit{4}</nowiki></code>
 
|<math>\mathit{0} \mathit{1} \mathit{2} \mathit{3} \mathit{4} \,\!</math>
 
|-
 
|<code><nowiki>\mathit{5} \mathit{6} \mathit{7} \mathit{8} \mathit{9}</nowiki></code>
 
|<math>\mathit{5} \mathit{6} \mathit{7} \mathit{8} \mathit{9}\,\!</math>
 
|-
 
! colspan="2" | Roman typeface
 
|-
 
|<code><nowiki>\mathrm{A} \mathrm{B} \mathrm{C} \mathrm{D} \mathrm{E} \mathrm{F} \mathrm{G}</nowiki></code>
 
|<math>\mathrm{A} \mathrm{B} \mathrm{C} \mathrm{D} \mathrm{E} \mathrm{F} \mathrm{G} \,\!</math>
 
|-
 
|<code><nowiki>\mathrm{H} \mathrm{I} \mathrm{J} \mathrm{K} \mathrm{L} \mathrm{M}</nowiki></code>
 
|<math>\mathrm{H} \mathrm{I} \mathrm{J} \mathrm{K} \mathrm{L} \mathrm{M} \,\!</math>
 
|-
 
|<code><nowiki>\mathrm{N} \mathrm{O} \mathrm{P} \mathrm{Q} \mathrm{R} \mathrm{S} \mathrm{T}</nowiki></code>
 
|<math>\mathrm{N} \mathrm{O} \mathrm{P} \mathrm{Q} \mathrm{R} \mathrm{S} \mathrm{T} \,\!</math>
 
|-
 
|<code><nowiki>\mathrm{U} \mathrm{V} \mathrm{W} \mathrm{X} \mathrm{Y} \mathrm{Z}</nowiki></code>
 
|<math>\mathrm{U} \mathrm{V} \mathrm{W} \mathrm{X} \mathrm{Y} \mathrm{Z} \,\!</math>
 
|-
 
|<code><nowiki>\mathrm{a} \mathrm{b} \mathrm{c} \mathrm{d} \mathrm{e} \mathrm{f} \mathrm{g}</nowiki></code>
 
|<math>\mathrm{a} \mathrm{b} \mathrm{c} \mathrm{d} \mathrm{e} \mathrm{f} \mathrm{g}\,\!</math>
 
|-
 
|<code><nowiki>\mathrm{h} \mathrm{i} \mathrm{j} \mathrm{k} \mathrm{l} \mathrm{m}</nowiki></code>
 
|<math>\mathrm{h} \mathrm{i} \mathrm{j} \mathrm{k} \mathrm{l} \mathrm{m} \,\!</math>
 
|-
 
|<code><nowiki>\mathrm{n} \mathrm{o} \mathrm{p} \mathrm{q} \mathrm{r} \mathrm{s} \mathrm{t}</nowiki></code>
 
|<math>\mathrm{n} \mathrm{o} \mathrm{p} \mathrm{q} \mathrm{r} \mathrm{s} \mathrm{t} \,\!</math>
 
|-
 
|<code><nowiki>\mathrm{u} \mathrm{v} \mathrm{w} \mathrm{x} \mathrm{y} \mathrm{z}</nowiki></code>
 
|<math>\mathrm{u} \mathrm{v} \mathrm{w} \mathrm{x} \mathrm{y} \mathrm{z} \,\!</math>
 
|-
 
|<code><nowiki>\mathrm{0} \mathrm{1} \mathrm{2} \mathrm{3} \mathrm{4}</nowiki></code>
 
|<math>\mathrm{0} \mathrm{1} \mathrm{2} \mathrm{3} \mathrm{4} \,\!</math>
 
|-
 
|<code><nowiki>\mathrm{5} \mathrm{6} \mathrm{7} \mathrm{8} \mathrm{9}</nowiki></code>
 
|<math>\mathrm{5} \mathrm{6} \mathrm{7} \mathrm{8} \mathrm{9}\,\!</math>
 
|-
 
! colspan="2" | Fraktur typeface
 
|-
 
|<code><nowiki>\mathfrak{A} \mathfrak{B} \mathfrak{C} \mathfrak{D} \mathfrak{E} \mathfrak{F} \mathfrak{G}</nowiki></code>
 
|<math>\mathfrak{A} \mathfrak{B} \mathfrak{C} \mathfrak{D} \mathfrak{E} \mathfrak{F} \mathfrak{G} \,\!</math>
 
|-
 
|<code><nowiki>\mathfrak{H} \mathfrak{I} \mathfrak{J} \mathfrak{K} \mathfrak{L} \mathfrak{M}</nowiki></code>
 
|<math>\mathfrak{H} \mathfrak{I} \mathfrak{J} \mathfrak{K} \mathfrak{L} \mathfrak{M} \,\!</math>
 
|-
 
|<code><nowiki>\mathfrak{N} \mathfrak{O} \mathfrak{P} \mathfrak{Q} \mathfrak{R} \mathfrak{S} \mathfrak{T}</nowiki></code>
 
|<math>\mathfrak{N} \mathfrak{O} \mathfrak{P} \mathfrak{Q} \mathfrak{R} \mathfrak{S} \mathfrak{T} \,\!</math>
 
|-
 
|<code><nowiki>\mathfrak{U} \mathfrak{V} \mathfrak{W} \mathfrak{X} \mathfrak{Y} \mathfrak{Z}</nowiki></code>
 
|<math>\mathfrak{U} \mathfrak{V} \mathfrak{W} \mathfrak{X} \mathfrak{Y} \mathfrak{Z} \,\!</math>
 
|-
 
|<code><nowiki>\mathfrak{a} \mathfrak{b} \mathfrak{c} \mathfrak{d} \mathfrak{e} \mathfrak{f} \mathfrak{g}</nowiki></code>
 
|<math>\mathfrak{a} \mathfrak{b} \mathfrak{c} \mathfrak{d} \mathfrak{e} \mathfrak{f} \mathfrak{g} \,\!</math>
 
|-
 
|<code><nowiki>\mathfrak{h} \mathfrak{i} \mathfrak{j} \mathfrak{k} \mathfrak{l} \mathfrak{m}</nowiki></code>
 
|<math>\mathfrak{h} \mathfrak{i} \mathfrak{j} \mathfrak{k} \mathfrak{l} \mathfrak{m} \,\!</math>
 
|-
 
|<code><nowiki>\mathfrak{n} \mathfrak{o} \mathfrak{p} \mathfrak{q} \mathfrak{r} \mathfrak{s} \mathfrak{t}</nowiki></code>
 
|<math>\mathfrak{n} \mathfrak{o} \mathfrak{p} \mathfrak{q} \mathfrak{r} \mathfrak{s} \mathfrak{t} \,\!</math>
 
|-
 
|<code><nowiki>\mathfrak{u} \mathfrak{v} \mathfrak{w} \mathfrak{x} \mathfrak{y} \mathfrak{z}</nowiki></code>
 
|<math>\mathfrak{u} \mathfrak{v} \mathfrak{w} \mathfrak{x} \mathfrak{y} \mathfrak{z} \,\!</math>
 
|-
 
|<code><nowiki>\mathfrak{0} \mathfrak{1} \mathfrak{2} \mathfrak{3} \mathfrak{4}</nowiki></code>
 
|<math>\mathfrak{0} \mathfrak{1} \mathfrak{2} \mathfrak{3} \mathfrak{4} \,\!</math>
 
|-
 
|<code><nowiki>\mathfrak{5} \mathfrak{6} \mathfrak{7} \mathfrak{8} \mathfrak{9}</nowiki></code>
 
|<math>\mathfrak{5} \mathfrak{6} \mathfrak{7} \mathfrak{8} \mathfrak{9}\,\!</math>
 
|-
 
! colspan="2" | Calligraphy/Script
 
|-
 
|<code><nowiki>\mathcal{A} \mathcal{B} \mathcal{C} \mathcal{D} \mathcal{E} \mathcal{F} \mathcal{G}</nowiki></code>
 
|<math>\mathcal{A} \mathcal{B} \mathcal{C} \mathcal{D} \mathcal{E} \mathcal{F} \mathcal{G} \,\!</math>
 
|-
 
|<code><nowiki>\mathcal{H} \mathcal{I} \mathcal{J} \mathcal{K} \mathcal{L} \mathcal{M}</nowiki></code>
 
|<math>\mathcal{H} \mathcal{I} \mathcal{J} \mathcal{K} \mathcal{L} \mathcal{M} \,\!</math>
 
|-
 
|<code><nowiki>\mathcal{N} \mathcal{O} \mathcal{P} \mathcal{Q} \mathcal{R} \mathcal{S} \mathcal{T}</nowiki></code>
 
|<math>\mathcal{N} \mathcal{O} \mathcal{P} \mathcal{Q} \mathcal{R} \mathcal{S} \mathcal{T} \,\!</math>
 
|-
 
|<code><nowiki>\mathcal{U} \mathcal{V} \mathcal{W} \mathcal{X} \mathcal{Y} \mathcal{Z}</nowiki></code>
 
|<math>\mathcal{U} \mathcal{V} \mathcal{W} \mathcal{X} \mathcal{Y} \mathcal{Z}\,\!</math>
 
|-
 
! colspan="2" | Hebrew
 
|-
 
|<code><nowiki>\aleph \beth \gimel \daleth</nowiki></code>
 
|<math>\aleph \beth \gimel \daleth\,\!</math>
 
|}
 
 
 
<table class="wikitable">
 
 
 
<tr>
 
<th>Feature</th>
 
<th>Syntax</th>
 
<th colspan="2">How it looks rendered</th>
 
</tr>
 
 
 
<tr>
 
<td>non-italicised characters</td>
 
<td>\mbox{abc}</td>
 
<td><math>\mbox{abc}</math></td>
 
<td><math>\mbox{abc} \,\!</math></td>
 
</tr>
 
 
 
<tr>
 
<td>mixed italics (bad)</td>
 
<td>\mbox{if} n \mbox{is even}</td>
 
<td><math>\mbox{if} n \mbox{is even}</math></td>
 
<td><math>\mbox{if} n \mbox{is even} \,\!</math></td>
 
</tr>
 
 
 
<tr>
 
<td>mixed italics (good)</td>
 
<td>\mbox{if }n\mbox{ is even}</td>
 
<td><math>\mbox{if }n\mbox{ is even}</math></td>
 
<td><math>\mbox{if }n\mbox{ is even} \,\!</math></td>
 
</tr>
 
 
 
<tr>
 
<td>mixed italics (more legible: ~ is a non-breaking space, while "\ " forces a space)</td>
 
<td>\mbox{if}~n\ \mbox{is even}</td>
 
<td><math>\mbox{if}~n\ \mbox{is even}</math></td>
 
<td><math>\mbox{if}~n\ \mbox{is even} \,\!</math></td>
 
</tr>
 
 
 
</table>
 
 
 
== Parenthesizing big expressions, brackets, bars ==
 
<table border="2" cellpadding="4" cellspacing="0" style="margin: 1em 1em 1em 0; background: #f9f9f9; border: 1px #aaa solid; border-collapse: collapse;">
 
 
 
<tr>
 
<th>Feature</th>
 
<th>Syntax</th>
 
<th>How it looks rendered</th>
 
</tr>
 
 
 
<tr>
 
<td>Bad</td>
 
<td>( \frac{1}{2} )</td>
 
<td><math>( \frac{1}{2} )</math></td>
 
</tr>
 
 
 
<tr>
 
<td>Good</td>
 
<td>\left ( \frac{1}{2} \right )</td>
 
<td><math>\left ( \frac{1}{2} \right )</math></td>
 
</tr>
 
 
 
</table>
 
 
 
You can use various delimiters with \left and \right:
 
 
 
<table border="2" cellpadding="4" cellspacing="0" style="margin: 1em 1em 1em 0; background: #f9f9f9; border: 1px #aaa solid; border-collapse: collapse;">
 
 
 
<tr>
 
<th>Feature</th>
 
<th>Syntax</th>
 
<th>How it looks rendered</th>
 
</tr>
 
 
 
<tr>
 
<td>Parentheses</td>
 
<td>\left ( \frac{a}{b} \right )</td>
 
<td><math>\left ( \frac{a}{b} \right )</math></td>
 
</tr>
 
 
 
<tr>
 
<td>Brackets</td>
 
<td>\left [ \frac{a}{b} \right ] \quad \left \lbrack \frac{a}{b} \right \rbrack</td>
 
<td><math>\left [ \frac{a}{b} \right ] \quad \left \lbrack \frac{a}{b} \right \rbrack</math></td>
 
</tr>
 
 
 
<tr>
 
<td>Braces</td>
 
<td>\left \{ \frac{a}{b} \right \} \quad \left \lbrace \frac{a}{b} \right \rbrace</td>
 
<td><math>\left \{ \frac{a}{b} \right \} \quad \left \lbrace \frac{a}{b} \right \rbrace</math></td>
 
</tr>
 
 
 
<tr>
 
<td>Angle brackets</td>
 
<td>\left \langle \frac{a}{b} \right \rangle</td>
 
<td><math>\left \langle \frac{a}{b} \right \rangle</math></td>
 
</tr>
 
 
 
<tr>
 
<td>Bars and double bars</td>
 
<td>\left | \frac{a}{b} \right \vert \left \Vert \frac{c}{d} \right \|</td>
 
<td><math>\left | \frac{a}{b} \right \vert \left \Vert \frac{c}{d} \right \|</math></td>
 
</tr>
 
 
 
<tr>
 
<td>Floor and ceiling functions:</td>
 
<td>\left \lfloor \frac{a}{b} \right \rfloor \left \lceil \frac{c}{d} \right \rceil</td>
 
<td><math>\left \lfloor \frac{a}{b} \right \rfloor \left \lceil \frac{c}{d} \right \rceil</math></td>
 
</tr>
 
 
 
<tr>
 
<td>Slashes and backslashes</td>
 
<td>\left / \frac{a}{b} \right \backslash</td>
 
<td><math>\left / \frac{a}{b} \right \backslash</math></td>
 
</tr>
 
 
 
<tr>
 
<td>Up, down and up-down arrows</td>
 
<td>\left \uparrow \frac{a}{b} \right \downarrow \quad \left \Uparrow \frac{a}{b} \right \Downarrow \quad \left \updownarrow \frac{a}{b} \right \Updownarrow</td>
 
<td><math>\left \uparrow \frac{a}{b} \right \downarrow \quad \left \Uparrow \frac{a}{b} \right \Downarrow \quad \left \updownarrow \frac{a}{b} \right \Updownarrow</math></td>
 
</tr>
 
 
 
<tr>
 
<td>
 
Delimiters can be mixed,<br/>as long as \left and \right match
 
</td>
 
<td>
 
\left [ 0,1 \right )<br/>\left \langle \psi \right |
 
</td>
 
<td>
 
<math>\left [ 0,1 \right )</math><br/><math>\left \langle \psi \right |</math>
 
</td>
 
</tr>
 
 
 
<tr>
 
<td>Use \left. and \right. if you don't<br/>want a delimiter to appear:</td>
 
<td>\left . \frac{A}{B} \right \} \to X</td>
 
<td><math>\left . \frac{A}{B} \right \} \to X</math></td>
 
</tr>
 
 
 
<tr>
 
<td rowspan="7">Size of the delimiters</td>
 
<td>\big( \Big( \bigg( \Bigg( ... \Bigg] \bigg] \Big] \big]</td>
 
<td colspan="2">
 
<math>\big( \Big( \bigg( \Bigg( ... \Bigg] \bigg] \Big] \big]</math>
 
</td>
 
</tr>
 
<tr>
 
<td>\big\{ \Big\{ \bigg\{ \Bigg\{ ... \Bigg\rangle \bigg\rangle \Big\rangle \big\rangle</td>
 
<td colspan="2">
 
<math>\big\{ \Big\{ \bigg\{ \Bigg\{ ... \Bigg\rangle \bigg\rangle \Big\rangle \big\rangle</math>
 
</td>
 
</tr>
 
<tr>
 
<td>\big\| \Big\| \bigg\| \Bigg\| ... \Bigg| \bigg| \Big| \big|</td>
 
<td colspan="2"><math>\big\| \Big\| \bigg\| \Bigg\| ... \Bigg| \bigg| \Big| \big|</math></td>
 
</tr>
 
<tr>
 
<td>\big\lfloor \Big\lfloor \bigg\lfloor \Bigg\lfloor ... \Bigg\rceil \bigg\rceil \Big\rceil \big\rceil</td>
 
<td colspan="2">
 
<math>\big\lfloor \Big\lfloor \bigg\lfloor \Bigg\lfloor ... \Bigg\rceil \bigg\rceil \Big\rceil \big\rceil</math>
 
</td>
 
</tr>
 
<tr>
 
<td>\big\uparrow \Big\uparrow \bigg\uparrow \Bigg\uparrow ... \Bigg\Downarrow \bigg\Downarrow \Big\Downarrow \big\Downarrow</td>
 
<td colspan="2">
 
<math>\big\uparrow \Big\uparrow \bigg\uparrow \Bigg\uparrow ... \Bigg\Downarrow \bigg\Downarrow \Big\Downarrow \big\Downarrow</math>
 
</td>
 
</tr>
 
<tr>
 
<td>\big\updownarrow \Big\updownarrow \bigg\updownarrow \Bigg\updownarrow ... \Bigg\Updownarrow \bigg\Updownarrow \Big\Updownarrow \big\Updownarrow</td>
 
<td colspan="2">
 
<math>\big\updownarrow \Big\updownarrow \bigg\updownarrow \Bigg\updownarrow ... \Bigg\Updownarrow \bigg\Updownarrow \Big\Updownarrow \big\Updownarrow</math>
 
</td>
 
</tr>
 
<tr>
 
<td>\big / \Big / \bigg / \Bigg / ... \Bigg\backslash \bigg\backslash \Big\backslash \big\backslash</td>
 
<td colspan="2">
 
<math>\big / \Big / \bigg / \Bigg / ... \Bigg\backslash \bigg\backslash \Big\backslash \big\backslash</math>
 
</td>
 
</tr>
 
 
 
</table>
 
 
 
== Spacing ==
 
Note that TeX handles most spacing automatically, but you may sometimes want manual control.
 
<table border="2" cellpadding="4" cellspacing="0" style="margin: 1em 1em 1em 0; background: #f9f9f9; border: 1px #aaa solid; border-collapse: collapse;">
 
 
 
<tr>
 
<th>Feature</th>
 
<th>Syntax</th>
 
<th>How it looks rendered</th>
 
</tr>
 
 
 
<tr>
 
<td>double quad space</td>
 
<td>a \qquad b</td>
 
<td><math>a \qquad b</math></td>
 
</tr>
 
 
 
<tr>
 
<td>quad space</td>
 
<td>a \quad b</td>
 
<td><math>a \quad b</math></td>
 
</tr>
 
 
 
<tr>
 
<td>text space</td>
 
<td>a\ b</td>
 
<td><math>a\ b</math></td>
 
</tr>
 
 
 
<tr>
 
<td>text space without PNG conversion</td>
 
<td>a \mbox{ } b</td>
 
<td><math>a \mbox{ } b</math></td>
 
</tr>
 
 
 
<tr>
 
<td>large space</td>
 
<td>a\;b</td>
 
<td><math>a\;b</math></td>
 
</tr>
 
 
 
<tr>
 
<td>medium space</td>
 
<td>a\&gt;b</td>
 
<td>[not supported]</td>
 
</tr>
 
 
 
<tr>
 
<td>small space</td>
 
<td>a\,b</td>
 
<td><math>a\,b</math></td>
 
</tr>
 
 
 
<tr>
 
<td>no space</td>
 
<td>ab</td>
 
<td><math>ab\,</math></td>
 
</tr>
 
 
 
<tr>
 
<td>small negative space</td>
 
<td>a\!b</td>
 
<td><math>a\!b</math></td>
 
</tr>
 
 
 
</table>
 
 
 
== Align with normal text flow ==
 
Due to the default css
 
 
 
<pre>img.tex { vertical-align: middle; }</pre>
 
 
 
an inline expression like <math>\int_{-N}^{N} e^x\, dx = 2 \sinh N</math> should look good.
 
 
 
If you need to align it otherwise, use <code><nowiki><font style="vertical-align:-100%;"><math>...</math></font></nowiki></code> and play with the <code>vertical-align</code> argument until you get it right; however, how it looks may depend on the browser and the browser settings.
 
 
 
Also note that if you rely on this workaround, if/when the rendering on the server gets fixed in future releases, as a result of this extra manual offset your formulae will suddenly be aligned incorrectly. So use it sparingly, if at all.
 
 
 
== Forced PNG rendering ==
 
 
 
To force the formula to render as PNG, add <code>\,</code> (small space) at the end of the formula (where it is not rendered).  This will force PNG if the user is in "HTML if simple" mode, but not for "HTML if possible" mode (math rendering settings in [[Help:Preferences|preferences]]).
 
 
 
You can also use <code>\,\!</code> (small space and negative space, which cancel out) anywhere inside the math tags.  This ''does'' force PNG even in "HTML if possible" mode, unlike <code>\,</code>.
 
 
 
This could be useful to keep the rendering of formulae in a proof consistent, for example, or to fix formulae that render incorrectly in HTML (at one time, a^{2+2} rendered with an extra underscore), or to demonstrate how something is rendered when it would normally show up as HTML (as in the examples above).
 
 
 
For instance:
 
 
 
<table border="2" cellpadding="4" cellspacing="0" style="margin: 1em 1em 1em 0; background: #f9f9f9; border: 1px #aaa solid; border-collapse: collapse;">
 
 
 
<tr>
 
<th>Syntax</th>
 
<th>How it looks rendered</th>
 
</tr>
 
 
 
<tr>
 
<td>a^{c+2}</td>
 
<td><math>a^{c+2}</math></td>
 
</tr>
 
 
 
<tr>
 
<td>a^{c+2} \,</td>
 
<td><math>a^{c+2} \,</math></td>
 
</tr>
 
 
 
<tr>
 
<td>a^{\,\!c+2}</td>
 
<td><math>a^{\,\!c+2}</math> </td>
 
</tr>
 
 
 
<tr>
 
<td>a^{b^{c+2}}</td>
 
<td><math>a^{b^{c+2}}</math> (WRONG with option "HTML if possible or else PNG"!)</td>
 
</tr>
 
 
 
<tr>
 
<td>a^{b^{c+2}} \,</td>
 
<td><math>a^{b^{c+2}} \,</math> (WRONG with option "HTML if possible or else PNG"!)</td>
 
</tr>
 
 
 
<tr>
 
<td>a^{b^{c+2}}\approx 5</td>
 
<td><math>a^{b^{c+2}}\approx 5</math> (due to "<math>\approx</math>" correctly displayed, no code "\,\!" needed)</td>
 
</tr>
 
 
 
<tr>
 
<td>a^{b^{\,\!c+2}}</td>
 
<td><math>a^{b^{\,\!c+2}}</math></td>
 
</tr>
 
 
 
<tr>
 
<td>\int_{-N}^{N} e^x\, dx</td>
 
<td><math>\int_{-N}^{N} e^x\, dx</math></td>
 
</tr>
 
 
 
</table>
 

Τελευταία αναθεώρηση της 04:06, 10 Νοεμβρίου 2007

Ακολουθεί μια σύντομη περιγραφη για την χρήση των βασικών tags του wiki. Αν βρείτε κάτι χρήσιμο μην το κρατάτε για τον εαυτό σας, απλά προσθέστε το!

Γενικά[επεξεργασία]

Περιγραφή των βασικών συντακτικών κανόνων του mediawiki


Wiki text Result
''italic'' italic
'''bold''' bold
'''''bold and italic''''' bold and italic

==heading==
===level 2===
====level 3====
=====level 4=====

Headings in different sizes
[[Link to another page]]

[[Link|different title]]

Internal Link to another page

on the wiki

http://www.example.org
[http://www.example.org Text]

External link

Link with description

[[fr:Page en français]] Interwiki link to french Wikipedia (appears under “languages“)
[[Category:Example]] Add article to category “example“

----

horizontal line

* one
* two
* three

Bullet list

# one
# two
# three

Numbered list
[[Image:File.jpg|Text]]

[[Image:File.jpg|frame|Text]]
[[Image:File.jpg|thumb|Text]]

Image with alternative text

Image aligned right with caption
Thumbnail

[[Media:File.ogg]] Download link
{{Name}} Include template “Name“
--~~~ Signature (Link to userpage)

--~~~~

Signature with timestamp (date & time)
#REDIRECT [[Other article]] Redirect to another article

Κανόνες Σύνταξης Μαθηματικών Κειμένων[επεξεργασία]