Maths

Από PWMN
Μετάβαση στην πλοήγηση Πήδηση στην αναζήτηση


Functions, symbols, special characters

Accents/Diacritics

\acute{a} \grave{a} \hat{a} \tilde{a} \breve{a} <math>\acute{a} \grave{a} \hat{a} \tilde{a} \breve{a}\,\!</math>
\check{a} \bar{a} \ddot{a} \dot{a} <math>\check{a} \bar{a} \ddot{a} \dot{a}\,\!</math>

Standard functions

\sin a \cos b \tan c <math>\sin a \cos b \tan c\,\!</math>
\sec d \csc e \cot f <math>\sec d \csc e \cot f\,\!</math>
\arcsin h \arccos i \arctan j <math>\arcsin h \arccos i \arctan j\,\!</math>
\sinh k \cosh l \tanh m \coth n <math>\sinh k \cosh l \tanh m \coth n\,\!</math>
\operatorname{sh}o \operatorname{ch}p \operatorname{th}q <math>\operatorname{sh}o \operatorname{ch}p \operatorname{th}q\,\!</math>
\operatorname{argsh}r \operatorname{argch}s \operatorname{argth}t <math>\operatorname{argsh}r \operatorname{argch}s \operatorname{argth}t\,\!</math>
\lim u \limsup v \liminf w \min x \max y <math>\lim u \limsup v \liminf w \min x \max y\,\!</math>
\inf z \sup a \exp b \ln c \lg d \log e \log_{10} f \ker g <math>\inf z \sup a \exp b \ln c \lg d \log e \log_{10} f \ker g\,\!</math>
\deg h \gcd i \Pr j \det k \hom l \arg m \dim n <math>\deg h \gcd i \Pr j \det k \hom l \arg m \dim n\,\!</math>

Modular arithmetic

s_k \equiv 0 \pmod{m} a \bmod b <math>s_k \equiv 0 \pmod{m} a \bmod b\,\!</math>

Derivatives

\nabla \partial x dx \dot x \ddot y <math>\nabla \partial x dx \dot x \ddot y\,\!</math>

Sets

\forall \exists \empty \emptyset \varnothing <math>\forall \exists \empty \emptyset \varnothing\,\!</math>
\in \ni \not \in \notin \subset \subseteq \subsetneq \supset \supseteq \supsetneq <math>\in \ni \not \in \notin \subset \subseteq \subsetneq \supset \supseteq \supsetneq\,\!</math>
\cap \bigcap \cup \bigcup \biguplus \setminus \smallsetminus <math>\cap \bigcap \cup \bigcup \biguplus \setminus \smallsetminus\,\!</math>
\sqsubset \sqsubseteq \sqsupset \sqsupseteq \sqcap \sqcup \bigsqcup <math>\sqsubset \sqsubseteq \sqsupset \sqsupseteq \sqcap \sqcup \bigsqcup\,\!</math>

Operators

+ \oplus \bigoplus \pm \mp - <math>+ \oplus \bigoplus \pm \mp - \,\!</math>
\times \otimes \bigotimes \cdot \circ \bullet \bigodot <math>\times \otimes \bigotimes \cdot \circ \bullet \bigodot\,\!</math>
\star * / \div \frac{1}{2} <math>\star * / \div \frac{1}{2}\,\!</math>

Logic

\land \wedge \bigwedge \bar{q} \to p <math>\land \wedge \bigwedge \bar{q} \to p\,\!</math>
\lor \vee \bigvee \lnot \neg q \And <math>\lor \vee \bigvee \lnot \neg q \And\,\!</math>

Root

\sqrt{2} \sqrt[n]{x} <math>\sqrt{2} \sqrt[n]{x}\,\!</math>

Relations

\sim \approx \simeq \cong \dot= \overset{\underset{\mathrm{def}}{}}{=} <math>\sim \approx \simeq \cong \dot= \overset{\underset{\mathrm{def}}{}}{=}\,\!</math>
\le < \ll \gg \ge > \equiv \not\equiv \ne \mbox{or} \neq \propto <math>\le < \ll \gg \ge > \equiv \not\equiv \ne \mbox{or} \neq \propto\,\!</math>

Geometric

\Diamond \Box \triangle \angle \perp \mid \nmid \| 45^\circ 45^\circ\,\!</math>

Arrows

\leftarrow \gets \rightarrow \to \not\to \leftrightarrow \longleftarrow \longrightarrow <math>\leftarrow \gets \rightarrow \to \not\to \leftrightarrow \longleftarrow \longrightarrow\,\!</math>
\mapsto \longmapsto \hookrightarrow \hookleftarrow \nearrow \searrow \swarrow \nwarrow <math>\mapsto \longmapsto \hookrightarrow \hookleftarrow \nearrow \searrow \swarrow \nwarrow\,\!</math>
\uparrow \downarrow \updownarrow \rightharpoonup \rightharpoondown \leftharpoonup \leftharpoondown \upharpoonleft <math>\uparrow \downarrow \updownarrow \rightharpoonup \rightharpoondown \leftharpoonup \leftharpoondown \upharpoonleft\,\!</math>
\upharpoonright \downharpoonleft \downharpoonright \rightleftharpoons \Leftarrow \Rightarrow \Leftrightarrow \Longleftarrow <math>\upharpoonright \downharpoonleft \downharpoonright \rightleftharpoons \Leftarrow \Rightarrow \Leftrightarrow \Longleftarrow\,\!</math>
\Longrightarrow \Longleftrightarrow (or \iff) \Uparrow \Downarrow \Updownarrow \leftleftarrows \leftrightarrows \Lleftarrow \leftarrowtail \looparrowleft <math>\Longrightarrow \Longleftrightarrow \Uparrow \Downarrow \Updownarrow \leftleftarrows \leftrightarrows \Lleftarrow \leftarrowtail \looparrowleft \,\!</math>
\leftrightharpoons \curvearrowleft \circlearrowleft \Lsh \upuparrows \rightrightarrows \rightleftarrows \Rrightarrow \rightarrowtail \looparrowright <math>\leftrightharpoons \curvearrowleft \circlearrowleft \Lsh \upuparrows \rightrightarrows \rightleftarrows \Rrightarrow \rightarrowtail \looparrowright\,\!</math>
\curvearrowright \circlearrowright \Rsh \downdownarrows \multimap \leftrightsquigarrow \rightsquigarrow \nLeftarrow \nleftrightarrow \nRightarrow <math>\curvearrowright \circlearrowright \Rsh \downdownarrows \multimap \leftrightsquigarrow \rightsquigarrow \nLeftarrow \nleftrightarrow \nRightarrow\,\!</math>
\nLeftrightarrow \longleftrightarrow <math>\nLeftrightarrow \longleftrightarrow\,\!</math>

Special

\eth \S \P \% \dagger \ddagger \ldots \cdots <math>\eth \S \P \% \dagger \ddagger \ldots \cdots\,\!</math>
\smile \frown \wr \triangleleft \triangleright \infty \bot \top <math>\smile \frown \wr \triangleleft \triangleright \infty \bot \top\,\!</math>
\vdash \vDash \Vdash \models \lVert \rVert \imath \hbar <math>\vdash \vDash \Vdash \models \lVert \rVert \imath \hbar\,\!</math>
\ell \mho \Finv \Re \Im \wp \complement \diamondsuit <math>\ell \mho \Finv \Re \Im \wp \complement \diamondsuit\,\!</math>
\heartsuit \clubsuit \spadesuit \Game \flat \natural \sharp <math>\heartsuit \clubsuit \spadesuit \Game \flat \natural \sharp\,\!</math>

Unsorted (new stuff)

\vartriangle \triangledown \lozenge \circledS \measuredangle \nexists \Bbbk \backprime \blacktriangle \blacktriangledown <math> \vartriangle \triangledown \lozenge \circledS \measuredangle \nexists \Bbbk \backprime \blacktriangle \blacktriangledown</math>
\blacksquare \blacklozenge \bigstar \sphericalangle \diagup \diagdown \dotplus \Cap \Cup \barwedge <math> \blacksquare \blacklozenge \bigstar \sphericalangle \diagup \diagdown \dotplus \Cap \Cup \barwedge</math>
\veebar \doublebarwedge \boxminus \boxtimes \boxdot \boxplus \divideontimes \ltimes \rtimes \leftthreetimes <math> \veebar \doublebarwedge \boxminus \boxtimes \boxdot \boxplus \divideontimes \ltimes \rtimes \leftthreetimes</math>
\rightthreetimes \curlywedge \curlyvee \circleddash \circledast \circledcirc \centerdot \intercal \leqq \leqslant <math> \rightthreetimes \curlywedge \curlyvee \circleddash \circledast \circledcirc \centerdot \intercal \leqq \leqslant</math>
\eqslantless \lessapprox \approxeq \lessdot \lll \lessgtr \lesseqgtr \lesseqqgtr \doteqdot \risingdotseq <math> \eqslantless \lessapprox \approxeq \lessdot \lll \lessgtr \lesseqgtr \lesseqqgtr \doteqdot \risingdotseq</math>
\fallingdotseq \backsim \backsimeq \subseteqq \Subset \preccurlyeq \curlyeqprec \precsim \precapprox \vartriangleleft <math> \fallingdotseq \backsim \backsimeq \subseteqq \Subset \preccurlyeq \curlyeqprec \precsim \precapprox \vartriangleleft</math>
\Vvdash \bumpeq \Bumpeq \geqq \geqslant \eqslantgtr \gtrsim \gtrapprox \eqsim \gtrdot <math> \Vvdash \bumpeq \Bumpeq \geqq \geqslant \eqslantgtr \gtrsim \gtrapprox \eqsim \gtrdot</math>
\ggg \gtrless \gtreqless \gtreqqless \eqcirc \circeq \triangleq \thicksim \thickapprox \supseteqq <math> \ggg \gtrless \gtreqless \gtreqqless \eqcirc \circeq \triangleq \thicksim \thickapprox \supseteqq</math>
\Supset \succcurlyeq \curlyeqsucc \succsim \succapprox \vartriangleright \shortmid \shortparallel \between \pitchfork <math> \Supset \succcurlyeq \curlyeqsucc \succsim \succapprox \vartriangleright \shortmid \shortparallel \between \pitchfork</math>
\varpropto \blacktriangleleft \therefore \backepsilon \blacktriangleright \because \nleqslant \nleqq \lneq \lneqq <math> \varpropto \blacktriangleleft \therefore \backepsilon \blacktriangleright \because \nleqslant \nleqq \lneq \lneqq</math>
\lvertneqq \lnsim \lnapprox \nprec \npreceq \precneqq \precnsim \precnapprox \nsim \nshortmid <math> \lvertneqq \lnsim \lnapprox \nprec \npreceq \precneqq \precnsim \precnapprox \nsim \nshortmid</math>
\nvdash \nVdash \ntriangleleft \ntrianglelefteq \nsubseteq \nsubseteqq \varsubsetneq \subsetneqq \varsubsetneqq \ngtr <math> \nvdash \nVdash \ntriangleleft \ntrianglelefteq \nsubseteq \nsubseteqq \varsubsetneq \subsetneqq \varsubsetneqq \ngtr</math>
\ngeqslant \ngeqq \gneq \gneqq \gvertneqq \gnsim \gnapprox \nsucc \nsucceq \succneqq <math> \ngeqslant \ngeqq \gneq \gneqq \gvertneqq \gnsim \gnapprox \nsucc \nsucceq \succneqq</math>
\succnsim \succnapprox \ncong \nshortparallel \nparallel \nvDash \nVDash \ntriangleright \ntrianglerighteq \nsupseteq <math> \succnsim \succnapprox \ncong \nshortparallel \nparallel \nvDash \nVDash \ntriangleright \ntrianglerighteq \nsupseteq</math>
\nsupseteqq \varsupsetneq \supsetneqq \varsupsetneqq <math> \nsupseteqq \varsupsetneq \supsetneqq \varsupsetneqq</math>
\jmath \surd \ast \uplus \diamond \bigtriangleup \bigtriangledown \ominus <math>\jmath \surd \ast \uplus \diamond \bigtriangleup \bigtriangledown \ominus\,\!</math>
\oslash \odot \bigcirc \amalg \prec \succ \preceq \succeq <math>\oslash \odot \bigcirc \amalg \prec \succ \preceq \succeq\,\!</math>
\dashv \asymp \doteq \parallel <math>\dashv \asymp \doteq \parallel\,\!</math>

Subscripts, superscripts, integrals

Feature Syntax How it looks rendered
HTML PNG
Superscript a^2 <math>a^2</math> <math>a^2 \,\!</math>
Subscript a_2 <math>a_2</math> <math>a_2 \,\!</math>
Grouping a^{2+2} <math>a^{2+2}</math> <math>a^{2+2}\,\!</math>
a_{i,j} <math>a_{i,j}</math> <math>a_{i,j}\,\!</math>
Combining sub & super x_2^3 <math>x_2^3</math>
Preceding and/or Additional sub & super \sideset{_1^2}{_3^4}\prod_a^b <math>\sideset{_1^2}{_3^4}\prod_a^b</math>
{}_1^2\!\Omega_3^4 <math>{}_1^2\!\Omega_3^4</math>
Stacking \overset{\alpha}{\omega} <math>\overset{\alpha}{\omega}</math>
\underset{\alpha}{\omega} <math>\underset{\alpha}{\omega}</math>
\overset{\alpha}{\underset{\gamma}{\omega}} <math>\overset{\alpha}{\underset{\gamma}{\omega}}</math>
\stackrel{\alpha}{\omega} <math>\stackrel{\alpha}{\omega}</math>
Derivative (forced PNG) x', y'', f', f''\!   <math>x', y, f', f\!</math>
Derivative (f in italics may overlap primes in HTML) x', y'', f', f'' <math>x', y, f', f</math> <math>x', y, f', f\!</math>
Derivative (wrong in HTML) x^\prime, y^{\prime\prime} <math>x^\prime, y^{\prime\prime}</math> <math>x^\prime, y^{\prime\prime}\,\!</math>
Derivative (wrong in PNG) x\prime, y\prime\prime <math>x\prime, y\prime\prime</math> <math>x\prime, y\prime\prime\,\!</math>
Derivative dots \dot{x}, \ddot{x} <math>\dot{x}, \ddot{x}</math>
Underlines, overlines, vectors \hat a \ \bar b \ \vec c <math>\hat a \ \bar b \ \vec c</math>
\overrightarrow{a b} \ \overleftarrow{c d} \ \widehat{d e f} <math>\overrightarrow{a b} \ \overleftarrow{c d} \ \widehat{d e f}</math>
\overline{g h i} \ \underline{j k l} <math>\overline{g h i} \ \underline{j k l}</math>
Arrows A \xleftarrow{n+\mu-1} B \xrightarrow[T]{n\pm i-1} C <math> A \xleftarrow{n+\mu-1} B \xrightarrow[T]{n\pm i-1} C</math>
Overbraces \overbrace{ 1+2+\cdots+100 }^{5050} <math>\overbrace{ 1+2+\cdots+100 }^{5050}</math>
Underbraces \underbrace{ a+b+\cdots+z }_{26} <math>\underbrace{ a+b+\cdots+z }_{26}</math>
Sum \sum_{k=1}^N k^2 <math>\sum_{k=1}^N k^2</math>
Sum (force \textstyle) \textstyle \sum_{k=1}^N k^2 <math>\textstyle \sum_{k=1}^N k^2</math>
Product \prod_{i=1}^N x_i <math>\prod_{i=1}^N x_i</math>
Product (force \textstyle) \textstyle \prod_{i=1}^N x_i <math>\textstyle \prod_{i=1}^N x_i</math>
Coproduct \coprod_{i=1}^N x_i <math>\coprod_{i=1}^N x_i</math>
Coproduct (force \textstyle) \textstyle \coprod_{i=1}^N x_i <math>\textstyle \coprod_{i=1}^N x_i</math>
Limit \lim_{n \to \infty}x_n <math>\lim_{n \to \infty}x_n</math>
Limit (force \textstyle) \textstyle \lim_{n \to \infty}x_n <math>\textstyle \lim_{n \to \infty}x_n</math>
Integral \int_{-N}^{N} e^x\, dx <math>\int_{-N}^{N} e^x\, dx</math>
Integral (force \textstyle) \textstyle \int_{-N}^{N} e^x\, dx <math>\textstyle \int_{-N}^{N} e^x\, dx</math>
Double integral \iint_{D}^{W} \, dx\,dy <math>\iint_{D}^{W} \, dx\,dy</math>
Triple integral \iiint_{E}^{V} \, dx\,dy\,dz <math>\iiint_{E}^{V} \, dx\,dy\,dz</math>
Quadruple integral \iiiint_{F}^{U} \, dx\,dy\,dz\,dt <math>\iiiint_{F}^{U} \, dx\,dy\,dz\,dt</math>
Path integral \oint_{C} x^3\, dx + 4y^2\, dy <math>\oint_{C} x^3\, dx + 4y^2\, dy</math>
Intersections \bigcap_1^{n} p <math>\bigcap_1^{n} p</math>
Unions \bigcup_1^{k} p <math>\bigcup_1^{k} p</math>

Fractions, matrices, multilines

Feature Syntax How it looks rendered
Fractions \frac{2}{4}=0.5 <math>\frac{2}{4}=0.5</math>
Small Fractions \tfrac{2}{4} = 0.5 <math>\tfrac{2}{4} = 0.5</math>
Large (normal) Fractions \dfrac{2}{4} = 0.5 <math>\dfrac{2}{4} = 0.5</math>
Large (nestled) Fractions \cfrac{2}{c + \cfrac{2}{d + \cfrac{2}{4}}} = a <math>\cfrac{2}{c + \cfrac{2}{d + \cfrac{2}{4}}} = a</math>
Binomial coefficients \binom{n}{k} <math>\binom{n}{k}</math>
Small Binomial coefficients \tbinom{n}{k} <math>\tbinom{n}{k}</math>
Large (normal) Binomial coefficients \dbinom{n}{k} <math>\dbinom{n}{k}</math>
Matrices
\begin{matrix}
  x & y \\
  z & v 
\end{matrix}
<math>\begin{matrix} x & y \\ z & v \end{matrix}</math>
\begin{vmatrix}
  x & y \\
  z & v 
\end{vmatrix}
<math>\begin{vmatrix} x & y \\ z & v \end{vmatrix}</math>
\begin{Vmatrix}
  x & y \\
  z & v
\end{Vmatrix}
<math>\begin{Vmatrix} x & y \\ z & v \end{Vmatrix}</math>
\begin{bmatrix}
  0      & \cdots & 0      \\
  \vdots & \ddots & \vdots \\ 
  0      & \cdots & 0
\end{bmatrix}
<math>\begin{bmatrix} 0 & \cdots & 0 \\ \vdots

& \ddots & \vdots \\ 0 & \cdots &

0\end{bmatrix} </math>
\begin{Bmatrix}
  x & y \\
  z & v
\end{Bmatrix}
<math>\begin{Bmatrix} x & y \\ z & v \end{Bmatrix}</math>
\begin{pmatrix}
  x & y \\
  z & v 
\end{pmatrix}
<math>\begin{pmatrix} x & y \\ z & v \end{pmatrix}</math>
\bigl( \begin{smallmatrix}
  a&b\\ c&d
\end{smallmatrix} \bigr)
<math>

\bigl( \begin{smallmatrix}

 a&b\\ c&d

\end{smallmatrix} \bigr)

</math>
Case distinctions
f(n) = 
\begin{cases} 
  n/2,  & \mbox{if }n\mbox{ is even} \\
  3n+1, & \mbox{if }n\mbox{ is odd} 
\end{cases}
<math>f(n) =

\begin{cases}

 n/2,  & \mbox{if }n\mbox{ is even} \\ 
 3n+1, & \mbox{if }n\mbox{ is odd} 
\end{cases} </math>
Multiline equations
\begin{align}
 f(x) & = (a+b)^2 \\
      & = a^2+2ab+b^2 \\
\end{align}
<math>

\begin{align}

f(x) & = (a+b)^2 \\
     & = a^2+2ab+b^2 \\

\end{align}

</math>
\begin{alignat}{2}
 f(x) & = (a-b)^2 \\
      & = a^2-2ab+b^2 \\
\end{alignat}
<math>

\begin{alignat}{2}

f(x) & = (a-b)^2 \\
     & = a^2-2ab+b^2 \\

\end{alignat}

</math>
Multiline equations (must define number of colums used ({lcr}) (should not be used unless needed)
\begin{array}{lcl}
  z        & = & a \\
  f(x,y,z) & = & x + y + z  
\end{array}
<math>\begin{array}{lcl}
 z        & = & a \\
 f(x,y,z) & = & x + y + z  
\end{array}</math>
Multiline equations (more)
\begin{array}{lcr}
  z        & = & a \\
  f(x,y,z) & = & x + y + z     
\end{array}
<math>\begin{array}{lcr}
 z        & = & a \\
 f(x,y,z) & = & x + y + z     
\end{array}</math>
Breaking up a long expression so that it wraps when necessary

<math>f(x) \,\!</math>
<math>= \sum_{n=0}^\infty a_n x^n </math>
<math>= a_0+a_1x+a_2x^2+\cdots</math>

<math>f(x) \,\!</math><math>= \sum_{n=0}^\infty a_n x^n </math><math>= a_0 +a_1x+a_2x^2+\cdots</math>

Simultaneous equations
\begin{cases}
    3x + 5y +  z \\
    7x - 2y + 4z \\
   -6x + 3y + 2z 
\end{cases}
<math>\begin{cases} 3x + 5y + z \\ 7x - 2y + 4z \\ -6x + 3y + 2z \end{cases}</math>

Alphabets and typefaces

Greek alphabet
\Alpha \Beta \Gamma \Delta \Epsilon \Zeta <math>\Alpha \Beta \Gamma \Delta \Epsilon \Zeta \,\!</math>
\Eta \Theta \Iota \Kappa \Lambda \Mu <math>\Eta \Theta \Iota \Kappa \Lambda \Mu \,\!</math>
\Nu \Xi \Pi \Rho \Sigma \Tau <math>\Nu \Xi \Pi \Rho \Sigma \Tau\,\!</math>
\Upsilon \Phi \Chi \Psi \Omega <math>\Upsilon \Phi \Chi \Psi \Omega \,\!</math>
\alpha \beta \gamma \delta \epsilon \zeta <math>\alpha \beta \gamma \delta \epsilon \zeta \,\!</math>
\eta \theta \iota \kappa \lambda \mu <math>\eta \theta \iota \kappa \lambda \mu \,\!</math>
\nu \xi \pi \rho \sigma \tau <math>\nu \xi \pi \rho \sigma \tau \,\!</math>
\upsilon \phi \chi \psi \omega <math>\upsilon \phi \chi \psi \omega \,\!</math>
\varepsilon \digamma \vartheta \varkappa <math>\varepsilon \digamma \vartheta \varkappa \,\!</math>
\varpi \varrho \varsigma \varphi <math>\varpi \varrho \varsigma \varphi\,\!</math>
Blackboard Bold/Scripts
\mathbb{A} \mathbb{B} \mathbb{C} \mathbb{D} \mathbb{E} \mathbb{F} \mathbb{G} <math>\mathbb{A} \mathbb{B} \mathbb{C} \mathbb{D} \mathbb{E} \mathbb{F} \mathbb{G} \,\!</math>
\mathbb{H} \mathbb{I} \mathbb{J} \mathbb{K} \mathbb{L} \mathbb{M} <math>\mathbb{H} \mathbb{I} \mathbb{J} \mathbb{K} \mathbb{L} \mathbb{M} \,\!</math>
\mathbb{N} \mathbb{O} \mathbb{P} \mathbb{Q} \mathbb{R} \mathbb{S} \mathbb{T} <math>\mathbb{N} \mathbb{O} \mathbb{P} \mathbb{Q} \mathbb{R} \mathbb{S} \mathbb{T} \,\!</math>
\mathbb{U} \mathbb{V} \mathbb{W} \mathbb{X} \mathbb{Y} \mathbb{Z} <math>\mathbb{U} \mathbb{V} \mathbb{W} \mathbb{X} \mathbb{Y} \mathbb{Z}\,\!</math>
boldface (vectors)
\mathbf{A} \mathbf{B} \mathbf{C} \mathbf{D} \mathbf{E} \mathbf{F} \mathbf{G} <math>\mathbf{A} \mathbf{B} \mathbf{C} \mathbf{D} \mathbf{E} \mathbf{F} \mathbf{G} \,\!</math>
\mathbf{H} \mathbf{I} \mathbf{J} \mathbf{K} \mathbf{L} \mathbf{M} <math>\mathbf{H} \mathbf{I} \mathbf{J} \mathbf{K} \mathbf{L} \mathbf{M} \,\!</math>
\mathbf{N} \mathbf{O} \mathbf{P} \mathbf{Q} \mathbf{R} \mathbf{S} \mathbf{T} <math>\mathbf{N} \mathbf{O} \mathbf{P} \mathbf{Q} \mathbf{R} \mathbf{S} \mathbf{T} \,\!</math>
\mathbf{U} \mathbf{V} \mathbf{W} \mathbf{X} \mathbf{Y} \mathbf{Z} <math>\mathbf{U} \mathbf{V} \mathbf{W} \mathbf{X} \mathbf{Y} \mathbf{Z} \,\!</math>
\mathbf{a} \mathbf{b} \mathbf{c} \mathbf{d} \mathbf{e} \mathbf{f} \mathbf{g} <math>\mathbf{a} \mathbf{b} \mathbf{c} \mathbf{d} \mathbf{e} \mathbf{f} \mathbf{g} \,\!</math>
\mathbf{h} \mathbf{i} \mathbf{j} \mathbf{k} \mathbf{l} \mathbf{m} <math>\mathbf{h} \mathbf{i} \mathbf{j} \mathbf{k} \mathbf{l} \mathbf{m} \,\!</math>
\mathbf{n} \mathbf{o} \mathbf{p} \mathbf{q} \mathbf{r} \mathbf{s} \mathbf{t} <math>\mathbf{n} \mathbf{o} \mathbf{p} \mathbf{q} \mathbf{r} \mathbf{s} \mathbf{t} \,\!</math>
\mathbf{u} \mathbf{v} \mathbf{w} \mathbf{x} \mathbf{y} \mathbf{z} <math>\mathbf{u} \mathbf{v} \mathbf{w} \mathbf{x} \mathbf{y} \mathbf{z} \,\!</math>
\mathbf{0} \mathbf{1} \mathbf{2} \mathbf{3} \mathbf{4} <math>\mathbf{0} \mathbf{1} \mathbf{2} \mathbf{3} \mathbf{4} \,\!</math>
\mathbf{5} \mathbf{6} \mathbf{7} \mathbf{8} \mathbf{9} <math>\mathbf{5} \mathbf{6} \mathbf{7} \mathbf{8} \mathbf{9}\,\!</math>
Boldface (greek)
\boldsymbol{\Alpha} \boldsymbol{\Beta} \boldsymbol{\Gamma} \boldsymbol{\Delta} \boldsymbol{\Epsilon} \boldsymbol{\Zeta} <math>\boldsymbol{\Alpha} \boldsymbol{\Beta} \boldsymbol{\Gamma} \boldsymbol{\Delta} \boldsymbol{\Epsilon} \boldsymbol{\Zeta} \,\!</math>
\boldsymbol{\Eta} \boldsymbol{\Theta} \boldsymbol{\Iota} \boldsymbol{\Kappa} \boldsymbol{\Lambda} \boldsymbol{\Mu} <math>\boldsymbol{\Eta} \boldsymbol{\Theta} \boldsymbol{\Iota} \boldsymbol{\Kappa} \boldsymbol{\Lambda} \boldsymbol{\Mu}\,\!</math>
\boldsymbol{\Nu} \boldsymbol{\Xi} \boldsymbol{\Pi} \boldsymbol{\Rho} \boldsymbol{\Sigma} \boldsymbol{\Tau} <math>\boldsymbol{\Nu} \boldsymbol{\Xi} \boldsymbol{\Pi} \boldsymbol{\Rho} \boldsymbol{\Sigma} \boldsymbol{\Tau}\,\!</math>
\boldsymbol{\Upsilon} \boldsymbol{\Phi} \boldsymbol{\Chi} \boldsymbol{\Psi} \boldsymbol{\Omega} <math>\boldsymbol{\Upsilon} \boldsymbol{\Phi} \boldsymbol{\Chi} \boldsymbol{\Psi} \boldsymbol{\Omega}\,\!</math>
\boldsymbol{\alpha} \boldsymbol{\beta} \boldsymbol{\gamma} \boldsymbol{\delta} \boldsymbol{\epsilon} \boldsymbol{\zeta} <math>\boldsymbol{\alpha} \boldsymbol{\beta} \boldsymbol{\gamma} \boldsymbol{\delta} \boldsymbol{\epsilon} \boldsymbol{\zeta}\,\!</math>
\boldsymbol{\eta} \boldsymbol{\theta} \boldsymbol{\iota} \boldsymbol{\kappa} \boldsymbol{\lambda} \boldsymbol{\mu} <math>\boldsymbol{\eta} \boldsymbol{\theta} \boldsymbol{\iota} \boldsymbol{\kappa} \boldsymbol{\lambda} \boldsymbol{\mu}\,\!</math>
\boldsymbol{\nu} \boldsymbol{\xi} \boldsymbol{\pi} \boldsymbol{\rho} \boldsymbol{\sigma} \boldsymbol{\tau} <math>\boldsymbol{\nu} \boldsymbol{\xi} \boldsymbol{\pi} \boldsymbol{\rho} \boldsymbol{\sigma} \boldsymbol{\tau}\,\!</math>
\boldsymbol{\upsilon} \boldsymbol{\phi} \boldsymbol{\chi} \boldsymbol{\psi} \boldsymbol{\omega} <math>\boldsymbol{\upsilon} \boldsymbol{\phi} \boldsymbol{\chi} \boldsymbol{\psi} \boldsymbol{\omega}\,\!</math>
\boldsymbol{\varepsilon} \boldsymbol{\digamma} \boldsymbol{\vartheta} \boldsymbol{\varkappa} <math>\boldsymbol{\varepsilon} \boldsymbol{\digamma} \boldsymbol{\vartheta} \boldsymbol{\varkappa} \,\!</math>
\boldsymbol{\varpi} \boldsymbol{\varrho} \boldsymbol{\varsigma} \boldsymbol{\varphi} <math>\boldsymbol{\varpi} \boldsymbol{\varrho} \boldsymbol{\varsigma} \boldsymbol{\varphi}\,\!</math>
Italics
\mathit{A} \mathit{B} \mathit{C} \mathit{D} \mathit{E} \mathit{F} \mathit{G} <math>\mathit{A} \mathit{B} \mathit{C} \mathit{D} \mathit{E} \mathit{F} \mathit{G} \,\!</math>
\mathit{H} \mathit{I} \mathit{J} \mathit{K} \mathit{L} \mathit{M} <math>\mathit{H} \mathit{I} \mathit{J} \mathit{K} \mathit{L} \mathit{M} \,\!</math>
\mathit{N} \mathit{O} \mathit{P} \mathit{Q} \mathit{R} \mathit{S} \mathit{T} <math>\mathit{N} \mathit{O} \mathit{P} \mathit{Q} \mathit{R} \mathit{S} \mathit{T} \,\!</math>
\mathit{U} \mathit{V} \mathit{W} \mathit{X} \mathit{Y} \mathit{Z} <math>\mathit{U} \mathit{V} \mathit{W} \mathit{X} \mathit{Y} \mathit{Z} \,\!</math>
\mathit{a} \mathit{b} \mathit{c} \mathit{d} \mathit{e} \mathit{f} \mathit{g} <math>\mathit{a} \mathit{b} \mathit{c} \mathit{d} \mathit{e} \mathit{f} \mathit{g} \,\!</math>
\mathit{h} \mathit{i} \mathit{j} \mathit{k} \mathit{l} \mathit{m} <math>\mathit{h} \mathit{i} \mathit{j} \mathit{k} \mathit{l} \mathit{m} \,\!</math>
\mathit{n} \mathit{o} \mathit{p} \mathit{q} \mathit{r} \mathit{s} \mathit{t} <math>\mathit{n} \mathit{o} \mathit{p} \mathit{q} \mathit{r} \mathit{s} \mathit{t} \,\!</math>
\mathit{u} \mathit{v} \mathit{w} \mathit{x} \mathit{y} \mathit{z} <math>\mathit{u} \mathit{v} \mathit{w} \mathit{x} \mathit{y} \mathit{z} \,\!</math>
\mathit{0} \mathit{1} \mathit{2} \mathit{3} \mathit{4} <math>\mathit{0} \mathit{1} \mathit{2} \mathit{3} \mathit{4} \,\!</math>
\mathit{5} \mathit{6} \mathit{7} \mathit{8} \mathit{9} <math>\mathit{5} \mathit{6} \mathit{7} \mathit{8} \mathit{9}\,\!</math>
Roman typeface
\mathrm{A} \mathrm{B} \mathrm{C} \mathrm{D} \mathrm{E} \mathrm{F} \mathrm{G} <math>\mathrm{A} \mathrm{B} \mathrm{C} \mathrm{D} \mathrm{E} \mathrm{F} \mathrm{G} \,\!</math>
\mathrm{H} \mathrm{I} \mathrm{J} \mathrm{K} \mathrm{L} \mathrm{M} <math>\mathrm{H} \mathrm{I} \mathrm{J} \mathrm{K} \mathrm{L} \mathrm{M} \,\!</math>
\mathrm{N} \mathrm{O} \mathrm{P} \mathrm{Q} \mathrm{R} \mathrm{S} \mathrm{T} <math>\mathrm{N} \mathrm{O} \mathrm{P} \mathrm{Q} \mathrm{R} \mathrm{S} \mathrm{T} \,\!</math>
\mathrm{U} \mathrm{V} \mathrm{W} \mathrm{X} \mathrm{Y} \mathrm{Z} <math>\mathrm{U} \mathrm{V} \mathrm{W} \mathrm{X} \mathrm{Y} \mathrm{Z} \,\!</math>
\mathrm{a} \mathrm{b} \mathrm{c} \mathrm{d} \mathrm{e} \mathrm{f} \mathrm{g} <math>\mathrm{a} \mathrm{b} \mathrm{c} \mathrm{d} \mathrm{e} \mathrm{f} \mathrm{g}\,\!</math>
\mathrm{h} \mathrm{i} \mathrm{j} \mathrm{k} \mathrm{l} \mathrm{m} <math>\mathrm{h} \mathrm{i} \mathrm{j} \mathrm{k} \mathrm{l} \mathrm{m} \,\!</math>
\mathrm{n} \mathrm{o} \mathrm{p} \mathrm{q} \mathrm{r} \mathrm{s} \mathrm{t} <math>\mathrm{n} \mathrm{o} \mathrm{p} \mathrm{q} \mathrm{r} \mathrm{s} \mathrm{t} \,\!</math>
\mathrm{u} \mathrm{v} \mathrm{w} \mathrm{x} \mathrm{y} \mathrm{z} <math>\mathrm{u} \mathrm{v} \mathrm{w} \mathrm{x} \mathrm{y} \mathrm{z} \,\!</math>
\mathrm{0} \mathrm{1} \mathrm{2} \mathrm{3} \mathrm{4} <math>\mathrm{0} \mathrm{1} \mathrm{2} \mathrm{3} \mathrm{4} \,\!</math>
\mathrm{5} \mathrm{6} \mathrm{7} \mathrm{8} \mathrm{9} <math>\mathrm{5} \mathrm{6} \mathrm{7} \mathrm{8} \mathrm{9}\,\!</math>
Fraktur typeface
\mathfrak{A} \mathfrak{B} \mathfrak{C} \mathfrak{D} \mathfrak{E} \mathfrak{F} \mathfrak{G} <math>\mathfrak{A} \mathfrak{B} \mathfrak{C} \mathfrak{D} \mathfrak{E} \mathfrak{F} \mathfrak{G} \,\!</math>
\mathfrak{H} \mathfrak{I} \mathfrak{J} \mathfrak{K} \mathfrak{L} \mathfrak{M} <math>\mathfrak{H} \mathfrak{I} \mathfrak{J} \mathfrak{K} \mathfrak{L} \mathfrak{M} \,\!</math>
\mathfrak{N} \mathfrak{O} \mathfrak{P} \mathfrak{Q} \mathfrak{R} \mathfrak{S} \mathfrak{T} <math>\mathfrak{N} \mathfrak{O} \mathfrak{P} \mathfrak{Q} \mathfrak{R} \mathfrak{S} \mathfrak{T} \,\!</math>
\mathfrak{U} \mathfrak{V} \mathfrak{W} \mathfrak{X} \mathfrak{Y} \mathfrak{Z} <math>\mathfrak{U} \mathfrak{V} \mathfrak{W} \mathfrak{X} \mathfrak{Y} \mathfrak{Z} \,\!</math>
\mathfrak{a} \mathfrak{b} \mathfrak{c} \mathfrak{d} \mathfrak{e} \mathfrak{f} \mathfrak{g} <math>\mathfrak{a} \mathfrak{b} \mathfrak{c} \mathfrak{d} \mathfrak{e} \mathfrak{f} \mathfrak{g} \,\!</math>
\mathfrak{h} \mathfrak{i} \mathfrak{j} \mathfrak{k} \mathfrak{l} \mathfrak{m} <math>\mathfrak{h} \mathfrak{i} \mathfrak{j} \mathfrak{k} \mathfrak{l} \mathfrak{m} \,\!</math>
\mathfrak{n} \mathfrak{o} \mathfrak{p} \mathfrak{q} \mathfrak{r} \mathfrak{s} \mathfrak{t} <math>\mathfrak{n} \mathfrak{o} \mathfrak{p} \mathfrak{q} \mathfrak{r} \mathfrak{s} \mathfrak{t} \,\!</math>
\mathfrak{u} \mathfrak{v} \mathfrak{w} \mathfrak{x} \mathfrak{y} \mathfrak{z} <math>\mathfrak{u} \mathfrak{v} \mathfrak{w} \mathfrak{x} \mathfrak{y} \mathfrak{z} \,\!</math>
\mathfrak{0} \mathfrak{1} \mathfrak{2} \mathfrak{3} \mathfrak{4} <math>\mathfrak{0} \mathfrak{1} \mathfrak{2} \mathfrak{3} \mathfrak{4} \,\!</math>
\mathfrak{5} \mathfrak{6} \mathfrak{7} \mathfrak{8} \mathfrak{9} <math>\mathfrak{5} \mathfrak{6} \mathfrak{7} \mathfrak{8} \mathfrak{9}\,\!</math>
Calligraphy/Script
\mathcal{A} \mathcal{B} \mathcal{C} \mathcal{D} \mathcal{E} \mathcal{F} \mathcal{G} <math>\mathcal{A} \mathcal{B} \mathcal{C} \mathcal{D} \mathcal{E} \mathcal{F} \mathcal{G} \,\!</math>
\mathcal{H} \mathcal{I} \mathcal{J} \mathcal{K} \mathcal{L} \mathcal{M} <math>\mathcal{H} \mathcal{I} \mathcal{J} \mathcal{K} \mathcal{L} \mathcal{M} \,\!</math>
\mathcal{N} \mathcal{O} \mathcal{P} \mathcal{Q} \mathcal{R} \mathcal{S} \mathcal{T} <math>\mathcal{N} \mathcal{O} \mathcal{P} \mathcal{Q} \mathcal{R} \mathcal{S} \mathcal{T} \,\!</math>
\mathcal{U} \mathcal{V} \mathcal{W} \mathcal{X} \mathcal{Y} \mathcal{Z} <math>\mathcal{U} \mathcal{V} \mathcal{W} \mathcal{X} \mathcal{Y} \mathcal{Z}\,\!</math>
Hebrew
\aleph \beth \gimel \daleth <math>\aleph \beth \gimel \daleth\,\!</math>
Feature Syntax How it looks rendered
non-italicised characters \mbox{abc} <math>\mbox{abc}</math> <math>\mbox{abc} \,\!</math>
mixed italics (bad) \mbox{if} n \mbox{is even} <math>\mbox{if} n \mbox{is even}</math> <math>\mbox{if} n \mbox{is even} \,\!</math>
mixed italics (good) \mbox{if }n\mbox{ is even} <math>\mbox{if }n\mbox{ is even}</math> <math>\mbox{if }n\mbox{ is even} \,\!</math>
mixed italics (more legible: ~ is a non-breaking space, while "\ " forces a space) \mbox{if}~n\ \mbox{is even} <math>\mbox{if}~n\ \mbox{is even}</math> <math>\mbox{if}~n\ \mbox{is even} \,\!</math>

Parenthesizing big expressions, brackets, bars

Feature Syntax How it looks rendered
Bad ( \frac{1}{2} ) <math>( \frac{1}{2} )</math>
Good \left ( \frac{1}{2} \right ) <math>\left ( \frac{1}{2} \right )</math>

You can use various delimiters with \left and \right:

Feature Syntax How it looks rendered
Parentheses \left ( \frac{a}{b} \right ) <math>\left ( \frac{a}{b} \right )</math>
Brackets \left [ \frac{a}{b} \right ] \quad \left \lbrack \frac{a}{b} \right \rbrack <math>\left [ \frac{a}{b} \right ] \quad \left \lbrack \frac{a}{b} \right \rbrack</math>
Braces \left \{ \frac{a}{b} \right \} \quad \left \lbrace \frac{a}{b} \right \rbrace <math>\left \{ \frac{a}{b} \right \} \quad \left \lbrace \frac{a}{b} \right \rbrace</math>
Angle brackets \left \langle \frac{a}{b} \right \rangle <math>\left \langle \frac{a}{b} \right \rangle</math>
Bars and double bars \left | \frac{a}{b} \right \vert \left \Vert \frac{c}{d} \right \| <math>\left | \frac{a}{b} \right \vert \left \Vert \frac{c}{d} \right \|</math>
Floor and ceiling functions: \left \lfloor \frac{a}{b} \right \rfloor \left \lceil \frac{c}{d} \right \rceil <math>\left \lfloor \frac{a}{b} \right \rfloor \left \lceil \frac{c}{d} \right \rceil</math>
Slashes and backslashes \left / \frac{a}{b} \right \backslash <math>\left / \frac{a}{b} \right \backslash</math>
Up, down and up-down arrows \left \uparrow \frac{a}{b} \right \downarrow \quad \left \Uparrow \frac{a}{b} \right \Downarrow \quad \left \updownarrow \frac{a}{b} \right \Updownarrow <math>\left \uparrow \frac{a}{b} \right \downarrow \quad \left \Uparrow \frac{a}{b} \right \Downarrow \quad \left \updownarrow \frac{a}{b} \right \Updownarrow</math>

Delimiters can be mixed,
as long as \left and \right match

\left [ 0,1 \right )
\left \langle \psi \right |

<math>\left [ 0,1 \right )</math>
<math>\left \langle \psi \right |</math>

Use \left. and \right. if you don't
want a delimiter to appear:
\left . \frac{A}{B} \right \} \to X <math>\left . \frac{A}{B} \right \} \to X</math>
Size of the delimiters \big( \Big( \bigg( \Bigg( ... \Bigg] \bigg] \Big] \big]

<math>\big( \Big( \bigg( \Bigg( ... \Bigg] \bigg] \Big] \big]</math>

\big\{ \Big\{ \bigg\{ \Bigg\{ ... \Bigg\rangle \bigg\rangle \Big\rangle \big\rangle

<math>\big\{ \Big\{ \bigg\{ \Bigg\{ ... \Bigg\rangle \bigg\rangle \Big\rangle \big\rangle</math>

\big\| \Big\| \bigg\| \Bigg\| ... \Bigg| \bigg| \Big| \big| <math>\big\| \Big\| \bigg\| \Bigg\| ... \Bigg| \bigg| \Big| \big|</math>
\big\lfloor \Big\lfloor \bigg\lfloor \Bigg\lfloor ... \Bigg\rceil \bigg\rceil \Big\rceil \big\rceil

<math>\big\lfloor \Big\lfloor \bigg\lfloor \Bigg\lfloor ... \Bigg\rceil \bigg\rceil \Big\rceil \big\rceil</math>

\big\uparrow \Big\uparrow \bigg\uparrow \Bigg\uparrow ... \Bigg\Downarrow \bigg\Downarrow \Big\Downarrow \big\Downarrow

<math>\big\uparrow \Big\uparrow \bigg\uparrow \Bigg\uparrow ... \Bigg\Downarrow \bigg\Downarrow \Big\Downarrow \big\Downarrow</math>

\big\updownarrow \Big\updownarrow \bigg\updownarrow \Bigg\updownarrow ... \Bigg\Updownarrow \bigg\Updownarrow \Big\Updownarrow \big\Updownarrow

<math>\big\updownarrow \Big\updownarrow \bigg\updownarrow \Bigg\updownarrow ... \Bigg\Updownarrow \bigg\Updownarrow \Big\Updownarrow \big\Updownarrow</math>

\big / \Big / \bigg / \Bigg / ... \Bigg\backslash \bigg\backslash \Big\backslash \big\backslash

<math>\big / \Big / \bigg / \Bigg / ... \Bigg\backslash \bigg\backslash \Big\backslash \big\backslash</math>

Spacing

Note that TeX handles most spacing automatically, but you may sometimes want manual control.

Feature Syntax How it looks rendered
double quad space a \qquad b <math>a \qquad b</math>
quad space a \quad b <math>a \quad b</math>
text space a\ b <math>a\ b</math>
text space without PNG conversion a \mbox{ } b <math>a \mbox{ } b</math>
large space a\;b <math>a\;b</math>
medium space a\>b [not supported]
small space a\,b <math>a\,b</math>
no space ab <math>ab\,</math>
small negative space a\!b <math>a\!b</math>

Align with normal text flow

Due to the default css

img.tex { vertical-align: middle; }

an inline expression like <math>\int_{-N}^{N} e^x\, dx = 2 \sinh N</math> should look good.

If you need to align it otherwise, use <font style="vertical-align:-100%;"><math>...</math></font> and play with the vertical-align argument until you get it right; however, how it looks may depend on the browser and the browser settings.

Also note that if you rely on this workaround, if/when the rendering on the server gets fixed in future releases, as a result of this extra manual offset your formulae will suddenly be aligned incorrectly. So use it sparingly, if at all.

Forced PNG rendering

To force the formula to render as PNG, add \, (small space) at the end of the formula (where it is not rendered). This will force PNG if the user is in "HTML if simple" mode, but not for "HTML if possible" mode (math rendering settings in preferences).

You can also use \,\! (small space and negative space, which cancel out) anywhere inside the math tags. This does force PNG even in "HTML if possible" mode, unlike \,.

This could be useful to keep the rendering of formulae in a proof consistent, for example, or to fix formulae that render incorrectly in HTML (at one time, a^{2+2} rendered with an extra underscore), or to demonstrate how something is rendered when it would normally show up as HTML (as in the examples above).

For instance:

Syntax How it looks rendered
a^{c+2} <math>a^{c+2}</math>
a^{c+2} \, <math>a^{c+2} \,</math>
a^{\,\!c+2} <math>a^{\,\!c+2}</math>
a^{b^{c+2}} <math>a^{b^{c+2}}</math> (WRONG with option "HTML if possible or else PNG"!)
a^{b^{c+2}} \, <math>a^{b^{c+2}} \,</math> (WRONG with option "HTML if possible or else PNG"!)
a^{b^{c+2}}\approx 5 <math>a^{b^{c+2}}\approx 5</math> (due to "<math>\approx</math>" correctly displayed, no code "\,\!" needed)
a^{b^{\,\!c+2}} <math>a^{b^{\,\!c+2}}</math>
\int_{-N}^{N} e^x\, dx <math>\int_{-N}^{N} e^x\, dx</math>


This has been tested with most of the formulae on this page, and seems to work perfectly.

You might want to include a comment in the HTML so people don't "correct" the formula by removing it:

<!-- The \,\! is to keep the formula rendered as PNG instead of HTML. Please don't remove it.-->

Color

Equations can use color:

  • {\color{Blue}x^2}+{\color{Brown}2x}-{\color{OliveGreen}1}
    <math>{\color{Blue}x^2}+{\color{Brown}2x}-{\color{OliveGreen}1}</math>
  • x_{1,2}=\frac{-b\pm\sqrt{\color{Red}b^2-4ac}}{2a}
    <math>x_{1,2}=\frac{-b\pm\sqrt{\color{Red}b^2-4ac}}{2a}</math>

See here for all named colours supported by LaTeX.

Note that color should not be used as the only way to identify something because color blind people may not be able to distinguish between the two colors. See en:Wikipedia:Manual of Style#Formatting issues.

Examples

Quadratic Polynomial

<math>ax^2 + bx + c = 0</math>
<math>ax^2 + bx + c = 0</math>

Quadratic Polynomial (Force PNG Rendering)

<math>ax^2 + bx + c = 0\,\!</math>

<math>ax^2 + bx + c = 0\,\!</math>

Quadratic Formula

<math>x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}</math>

<math>x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}</math>

Tall Parentheses and Fractions

<math>2 = \left( \frac{\left(3-x\right) \times 2}{3-x} \right)</math>

<math>2 = \left(
 \frac{\left(3-x\right) \times 2}{3-x}
 \right)</math>
<math>S_{new} = S_{old} + \frac{ \left( 5-T \right) ^2} {2}</math>

<math>S_{new} = S_{old} +
 \frac{ \left( 5-T \right) ^2} {2}</math>

Integrals

<math>\int_a^x \int_a^s f(y)\,dy\,ds = \int_a^x f(y)(x-y)\,dy</math>

<math>\int_a^x \int_a^s f(y)\,dy\,ds
 = \int_a^x f(y)(x-y)\,dy</math>

Summation

<math>\sum_{m=1}^\infty\sum_{n=1}^\infty\frac{m^2\,n}{3^m\left(m\,3^n+n\,3^m\right)}</math>
<math>\sum_{m=1}^\infty\sum_{n=1}^\infty\frac{m^2\,n}
 {3^m\left(m\,3^n+n\,3^m\right)}</math>

Differential Equation

<math>u + p(x)u' + q(x)u=f(x),\quad x>a</math>

<math>u'' + p(x)u' + q(x)u=f(x),\quad x>a</math>

Complex numbers

<math>|\bar{z}| = |z|, |(\bar{z})^n| = |z|^n, \arg(z^n) = n \arg(z)</math>

<math>|\bar{z}| = |z|,
 |(\bar{z})^n| = |z|^n,
 \arg(z^n) = n \arg(z)</math>

Limits

<math>\lim_{z\rightarrow z_0} f(z)=f(z_0)</math>

<math>\lim_{z\rightarrow z_0} f(z)=f(z_0)</math>

Integral Equation

<math>\phi_n(\kappa)
= \frac{1}{4\pi^2\kappa^2} \int_0^\infty \frac{\sin(\kappa R)}{\kappa R}  \frac{\partial}{\partial R}  \left[R^2\frac{\partial D_n(R)}{\partial R}\right]\,dR</math>

<math>\phi_n(\kappa) =
 \frac{1}{4\pi^2\kappa^2} \int_0^\infty
 \frac{\sin(\kappa R)}{\kappa R}
 \frac{\partial}{\partial R}
 \left[R^2\frac{\partial D_n(R)}{\partial R}\right]\,dR</math>

Example

<math>\phi_n(\kappa) = 0.033C_n^2\kappa^{-11/3},\quad \frac{1}{L_0}\ll\kappa\ll\frac{1}{l_0}</math>

<math>\phi_n(\kappa) = 
 0.033C_n^2\kappa^{-11/3},\quad
 \frac{1}{L_0}\ll\kappa\ll\frac{1}{l_0}</math>

Continuation and cases

<math>f(x) = \begin{cases}1 & -1 \le x < 0 \\
\frac{1}{2} & x = 0 \\ 1 - x^2 & 0 < x \le 1\end{cases}</math>

<math>
 f(x) =
 \begin{cases}
 1 & -1 \le x < 0 \\
 \frac{1}{2} & x = 0 \\
 1 - x^2 & 0 < x\le 1
 \end{cases}
 </math>

Prefixed subscript

<math>{}_pF_q(a_1,\dots,a_p;c_1,\dots,c_q;z) = \sum_{n=0}^\infty \frac{(a_1)_n\cdot\cdot\cdot(a_p)_n}{(c_1)_n\cdot\cdot\cdot(c_q)_n}\frac{z^n}{n!}</math>

 <math>{}_pF_q(a_1,\dots,a_p;c_1,\dots,c_q;z)
 = \sum_{n=0}^\infty
 \frac{(a_1)_n\cdot\cdot\cdot(a_p)_n}{(c_1)_n\cdot\cdot\cdot(c_q)_n}
 \frac{z^n}{n!}</math>